Epoxidized Natural Rubber / Silica Nanoscale Organic-Inorganic Hybrid Composites Prepared by Sol-Gel Technique

2004 ◽  
Vol 77 (5) ◽  
pp. 830-846 ◽  
Author(s):  
Abhijit Bandyopadhyay ◽  
Mousumi De Sarkar ◽  
Anil K. Bhowmick

Abstract Epoxidized natural rubber (ENR) / silica organic-inorganic hybrid nanocomposites were prepared by using a sol-gel technique. Tetraethoxysilane was used as the precursor for the in-situ generation of silica. The choice of ENR as a matrix was made because of its polar nature which can interact with the in-situ generated silica. The sol-gel reaction was carried out at room temperature by dissolving the rubber in tetrahydrofuran solvent using hydrochloric acid as the catalyst. The resultant composite films appeared transparent up to 50 wt% of tetraethoxysilane loading. Dispersion of the discrete silica particles having dimensions of 15 – 100 nm was observed through transmission electron microscope. Scanning electron microscopic studies did not produce any evidence for formation of silica network within the bulk of the composite. Infrared spectroscopic studies indicated the occurrence of chemical interaction within the rubber /silica organic-inorganic interfaces which was further supported by the insolubility of the respective samples in tetrahydrofuran under the ambient conditions. Mechanical reinforcement within the hybrid nanocomposites, both at high and low temperature regions, was demonstrated through dynamic mechanical analysis. The composites exhibited superior tensile strength and tensile moduli compared to the gum rubber samples. Further reinforcement was noticed when the rubber phase in the nanocomposites was cured with either benzoyl peroxide or dicumyl peroxide. The dicumyl peroxide cured hybrid composites displayed 112% improvement in tensile strength over the control crosslinked rubber sample, probably due to synergisms of nanosilica reinforcement and crosslinking of the rubber phase in the hybrids.

2000 ◽  
Vol 628 ◽  
Author(s):  
Samuel Amanuel ◽  
Vivak M. Malhotra

ABSTRACTIn pursuit of our goal of forming organic-inorganic hybrid frictional materials, we produced two types of composites, i.e., conventional and hybrid. We formed conventional composites by dispersing fly ash, montmorillonite clay, or pre-formed nano-sized silica particles in phenolic matrix. Hybrid composites were fabricated from sol-gel technique using tetramethylor-thosilicate-phenolic mixtures. We subjected our samples to X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), in-situ transmission-Fourier transform infrared (ISTA-FTIR), and dynamic mechanical analyzer (DMA) measurements at 40°C < T < 310°C. Our results suggested that the curing behavior of the phenolic polymer was affected by the concentration of the silica and hybrid composites manifested mechanical properties, which were substantially different from that of conventional composites.


Polymer ◽  
2005 ◽  
Vol 46 (10) ◽  
pp. 3343-3354 ◽  
Author(s):  
Rajatendu Sengupta ◽  
Abhijit Bandyopadhyay ◽  
Sunil Sabharwal ◽  
Tapan K. Chaki ◽  
Anil K. Bhowmick

RSC Advances ◽  
2020 ◽  
Vol 10 (27) ◽  
pp. 15881-15887
Author(s):  
Xuyang Luo ◽  
Fei Gao ◽  
Fengbiao Chen ◽  
Qian Cheng ◽  
Jinze Zhao ◽  
...  

A novel coating material was synthesized in one-step comprising two reactions (an amine–acetoacetate reaction and an in situ sol–gel technique).


2019 ◽  
Vol 7 (45) ◽  
pp. 7162-7175 ◽  
Author(s):  
Juan Du ◽  
Xiaohong She ◽  
Wenli Zhu ◽  
Qiaoling Yang ◽  
Huaju Zhang ◽  
...  

A hydrogel crosslinked by hierarchical inorganic hybrid crosslinks via simultaneous in situ sol–gel technique and radical polymerization exhibits excellent mechanical performance.


2014 ◽  
Vol 181 ◽  
pp. 39-45 ◽  
Author(s):  
Torpong Sittiphan ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

Author(s):  
Abdu. I. Abdallah ◽  
M. Sayed ◽  
M. Awaad ◽  
Adam H. E. Yousif ◽  
S.M. Naga
Keyword(s):  
Sol Gel ◽  

1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58816-58825 ◽  
Author(s):  
Bharat P. Kapgate ◽  
Chayan Das

The strong CR/in situ silica interaction causes filler accumulation at the interphase and enhances the compatibility and reinforcement in the NR/CR blend.


Sign in / Sign up

Export Citation Format

Share Document