scholarly journals Geological structures and their role in control of mineralization in Bahramtaj Lead and Zinc deposit, Yazd province, Central Iran

2021 ◽  
Vol 12 (2) ◽  
pp. 206-225
Author(s):  
Kazem Gholizadeh ◽  
Iraj Rasa ◽  
Mahammad Yazdi ◽  
Maria Boni
2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad Heidari Dahooei ◽  
Peyman Afzal ◽  
Mohammad Lotfi ◽  
Alireza Jafarirad

AbstractThe aim of this paper is to delineate the different lead–zinc mineralized zones in the Zardu area of the Kushk zinc–lead stratabound SEDEX deposit, Central Iran, through concentration–volume (C–V) modeling of geological and lithogeochemical drillcore data. The geological model demonstrated that the massive sulfide and pyrite+dolomite ore types as main rock types hosting mineralization. The C–V fractal modeling used lead, zinc and iron geochemical data to outline four types of mineralized zones, which were then compared to the mineralized rock types identified in the geological model. ‘Enriched’ mineralized zones contain lead and zinc values higher than 6.93% and 19.95%, respectively, with iron values lower than 12.02%. Areas where lead and zinc values were higher than 1.58% and 5.88%, respectively, and iron grades lower than 22% are labelled “high-grade” mineralized zones, and these zones are linked to massive sulfide and pyrite+dolomite lithologies of the geological model. Weakly mineralized zones, labelled ‘low-grade’ in the C– V model have 0–0.63% lead, 0–3.16% zinc and > 30.19% iron, and are correlated to those lithological units labeled as gangue in the geological model, including shales and dolomites, pyritized dolomites. Finally, a log-ratio matrix was employed to validate the results obtained and check correlations between the geological and fractal modeling. Using this method, a high overall accuracy (OA) was confirmed for the correlation between the enriched and high-grade mineralized zones and two lithological units — the massive sulfide and pyrite+dolomite ore types.


2016 ◽  
Vol 06 (06) ◽  
pp. 387-398
Author(s):  
Safoura Khani ◽  
Ahamd Khakzad ◽  
Mehdi Safari ◽  
Ali Solgi
Keyword(s):  

Author(s):  
D., A., L., A. Putri

Tectonic activity in an area could result in various impacts such as changes in elevation, level of slope percentages, river flow patterns and systems, and the formation of geological structures both locally and regionally, which will form a new landscape. The tectonic activity also affects the stratigraphic sequences of the area. Therefore, it is necessary to study morphotectonic or landscape forms that are influenced by active tectonic activities, both those occur recently and in the past. These geological results help provide information of the potential of natural resources in and around Tanjung Bungo area. Morphological data are based on three main aspects including morphogenesis, morphometry, and morphography. The data are collected in two ways, the first is field survey by directly observing and taking field data such as measuring geological structures, rock positions, and outcrop profiles. The second way is to interpret them through Digital Elevation Model (DEM) and aerial photographs by analyzing river flow patterns and lineament analysis. The field measurement data are processed using WinTensor, Dips, and SedLog Software. The supporting data such as Topographic Maps, Morphological Elevation Maps, Slope Maps, Flow Pattern Maps, and Lineament Maps are based on DEM data and are processed using ArcGis Software 10.6.1 and PCI Geomatica. Morphotectonically, the Tanjung Bungo area is at a moderate to high-class level of tectonic activity taken place actively resulted in several joints, faults, and folds. The formation of geological structures has affected the morphological conditions of the area as seen from the development of steep slopes, structural flow patterns such as radial, rectangular, and dendritic, as well as illustrated by rough surface relief in Tanjung Bungo area. This area has the potential for oil and gas resources as indicated by the Telisa Formation, consisting of calcareous silts rich in planktonic and benthonic fossils, which may be source rocks and its contact with the Menggala Formation which is braided river system deposits that could be good reservoirs. Further research needs to be done since current research is only an interpretation of surface data. Current natural resources being exploited in Tanjung Bungo region are coals. The coals have thicknesses of 5-7 cm and are classified as bituminous coals.


Sign in / Sign up

Export Citation Format

Share Document