Synthesis of One New Sugar Imine Molecule

2020 ◽  
Vol 42 (1) ◽  
pp. 103-103
Author(s):  
Majed Jari Mohammed Majed Jari Mohammed ◽  
Abdul Amir H Kadhum Abdul Amir H Kadhum ◽  
Adnan Ibrahim Mohammed and Sameer H Abbood Al Rekabi Adnan Ibrahim Mohammed and Sameer H Abbood Al Rekabi

In this research, the molecule Nand#39;-((E)-5-methoxy-2-((1-((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4,5-dihydro-1H-1,2,3-triazol-4-yl)methoxy) benzylidene)-4-methyl-1,2,3-thiadiazole-5-carbohydrazide were synthesized and characterized by several conventional analysis methods. Its physical properties and thermal stability was studied. The synthesis was conducted based on D-glucose using concept of click chemistry reaction mechanism. Some of the reaction was conducted using microwave irradiation. The synthesis steps initiated by adding propargyl bromide to 2- hydroxy-5-methoxy benzaldehyde under vigorous measure of moister isolated environment to produce propargyl ether(5-methoxy-2-(prop-2-yn-1-yloxy)benzaldehyde) 3 in which has terminal triple bond. In parallel a glycocyl azide was prepared by applying glycocyl acetate (acetate for protection) via bromination and then substituted by treatment with sodium azide to produce glycocyl azide in which actively reacted with terminated triple bond by click reaction in the present of Cu(II) catalyst. The coupling reaction of terminal alkyle group in compound 3 with azide group of (2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate) has given high yield of triazole. The produced triazole molecule is triazole(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(4-((2-formyl-4-methoxy)methyl)-1H-1,2,3-triazole-1-yl)tetrahydro-2H-pyran-3,4,5,-triyacetate) 7 undergoes further reaction to substitute carbonyl of the aromatic with hydrazide by applying 4-methyl-1,2,3-thiadiazole-5-carbohydrazide reagent. The glycocyl acetate was de-esterifide by sodium methoxide to remove the acetate protection. The structure of all these synthesized molecules was confirmed by FTIR, H1NMR, C13 NMR.

1969 ◽  
Vol 22 (7) ◽  
pp. 1405 ◽  
Author(s):  
JJ Brophy ◽  
MJ Gallagher

Cyclic and acyclic bis-phosphonium salts with a two-carbon bridge are smoothly cleaved to phosphines in high yield by potassium cyanide in dimethyl sulphoxide. Evidence is presented that the reaction proceeds by an elimination-addition sequence. An elimination reaction also occurs when sodium methoxide, sodium azide, sodium acetate, and triethylamine react with ethane-1,2-bis(tri-phenylphosphonium) dibromide. ��� In a novel reaction, triphenylphosphine is converted into its oxide by a mixture of sodium azide and dimethyl sulphoxide.


2009 ◽  
Vol 13 (03) ◽  
pp. 336-345 ◽  
Author(s):  
Mikhail A. Grin ◽  
Ivan S. Lonin ◽  
Anna A. Lakhina ◽  
Elena S. Ol'shanskaya ◽  
Alexey I. Makarov ◽  
...  

Glucose-, galactose- and lactose-containing photosensitizers based on derivatives of chlorophyll a and bacteriochlorophyll a were synthesized with the use of [3+2] cycloaddition between sugar azides and triple bond derivatives of chlorins and bacteriochlorins. Unlike bacteriochlorin cycloimide, chlorin was detected to form a Cu -complex during the click reaction. An approach to the synthesis of metal-free glycosylated chlorins was developed with the use of "protection" by Zn 2+ cation and subsequent demetalation. It is based on the action of alkynyl chlorin e6 derivative Zn -complex, which is resistant to the substitution by copper cation. Bacteriochlorin p cycloimide conjugate with per-acetylated β-D-lactose was obtained and shown to become water-soluble after unblocking of the lactose hydroxy functions. NMR studies allowed for the elucidation of structure, tautomeric form and conformation of the obtained compounds.


RSC Advances ◽  
2015 ◽  
Vol 5 (39) ◽  
pp. 30456-30463 ◽  
Author(s):  
Lin Wang ◽  
Li Liu ◽  
Libin Wu ◽  
Lingzhi Liu ◽  
Xiaobei Wang ◽  
...  

A tyrosine-conjugated biodynamer with thermo/pH-responsive and adaptive features is constructed and modified by tyrosine-click reaction and HRP-mediated oxidative coupling reaction.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 651 ◽  
Author(s):  
Huacheng Zhang ◽  
Zhaona Liu ◽  
Hui Fu

Pillararenes trimer with particularly designed structural geometry and excellent capacity of recognizing guest molecules is a very efficient and attractive building block for the fabrication of advanced self-assembled materials. Pillararenes trimers could be prepared via both covalent and noncovalent bonds. The classic organic synthesis reactions such as click reaction, palladium-catalyzed coupling reaction, amidation, esterification, and aminolysis are employed to build covalent bonds and integrate three pieces of pillararenes subunits together into the “star-shaped” trimers and linear foldamers. Alternatively, pillararenes trimers could also be assembled in the form of host-guest inclusions and mechanically interlocked molecules via noncovalent interactions, and during those procedures, pillararenes units contribute the cavity for recognizing guest molecules and act as a “wheel” subunit, respectively. By fully utilizing the driving forces such as host-guest interactions, charge transfer, hydrophobic, hydrogen bonding, and C–H…π and π–π stacking interactions, pillararenes trimers-based supramolecular self-assemblies provide a possibility in the construction of multi-dimensional materials such as vesicular and tubular aggregates, layered networks, as well as frameworks. Interestingly, those assembled materials exhibit interesting external stimuli responsiveness to e.g., variable concentrations, changed pH values, different temperature, as well as the addition/removal of competition guests and ions. Thus, they could further be used for diverse applications such as detection, sorption, and separation of significant multi-analytes including metal cations, anions, and amino acids.


2016 ◽  
Vol 11 (8) ◽  
pp. 1934578X1601100
Author(s):  
Mamiko Asano ◽  
Kazuo Harada ◽  
Akiko Umeno ◽  
Kazumasa Hirata

Dimeric indole alkaloids (DIAs), such as vinblastine and vincristine, found in Catharanthus roseus are used clinically as antitumor drugs. A stable supply of DIAs is desired because these alkaloids are very expensive due to their low abundance in plants. A coupling reaction between catharanthine (CAT) and vindoline (VID) is the rate-limiting step of DIAs biosynthesis in planta. 3', 4'-Anhydrovinblastine (AVLB), the product of the coupling reaction, is the precursor of CAT and VID. Therefore, an effective AVLB production system is greatly required. Previously we found that the coupling reaction of CAT and VID to produce AVLB occurred in the presence of flavin mononucleotide and manganese ion (II) by irradiation with near-ultraviolet light at a peak of 370 nm without the presence of any enzyme. In this study, we investigated the effects of organic solvents on this non-enzymatic reaction. We show that the addition of 10% methanol to the reaction mixture permitted the preparation of a highly concentrated substrate solution, resulting in a high yield of AVLB by the coupling reaction. Conditions for the coupling reaction in 10% methanol solution were optimized. We also confirmed that the coupling reaction could occur in crude extracts of C. roseus obtained by organic solvent extraction. These findings suggest a method to produce DIAs on a large scale with reduced production costs.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2296 ◽  
Author(s):  
Toru Hashimoto ◽  
Kei Funatsu ◽  
Atsufumi Ohtani ◽  
Erika Asano ◽  
Yoshitaka Yamaguchi

A cross-coupling reaction of allylic aryl ethers with arylmagnesium reagents was investigated using β-aminoketonato- and β-diketiminato-based pincer-type nickel(II) complexes as catalysts. An β-aminoketonato nickel(II) complex bearing a diphenylphosphino group as a third donor effectively catalyzed the reaction to afford the target cross-coupled products, allylbenzene derivatives, in high yield. The regioselective reaction of a variety of substituted cinnamyl ethers proceeded to give the corresponding linear products. In contrast, α- and γ-alkyl substituted allylic ethers afforded a mixture of the linear and branched products. These results indicated that the coupling reaction proceeded via a π-allyl nickel intermediate.


2004 ◽  
Vol 59 (11-12) ◽  
pp. 880-886 ◽  
Author(s):  
Marko Oblak ◽  
Andrej Preželj ◽  
Slavko Pečar ◽  
Tom Solmajer

Several novel thiol-reactive clenbuterol analogues were coupled in high yield with bovine serum albumin (BSA). After labelling of unreacted cysteines with maleimide spin label (MiSL), the yield of the coupling reaction was determined by electron paramagnetic resonance (EPR) spectroscopy and spectral analysis. Two spin-probe populations with different mobility states were quantitatively determined. Molecular dynamics was used to model the structure of clenbuterol analogues and spin label conjugated to BSA and recognition of conjugates by anti-clenbuterol antibodies was demonstrated. The recognition of BSA-A, BSA-C and BSAS conjugates with monoclonal and polyclonal anti-clenbuterol (mCLB-Ab and rCLB-Ab) antibodies was an indication, that chlorine substituents on the aromatic ring of clenbuterol derivatives are not necessary for the binding of antibodies to the conjugates. These results confirmed the importance of the tert-butylamino group as a part of the epitope and contribute to the understanding of the recognition process with anti-clenbuterol antibodies.


2015 ◽  
Vol 6 (3) ◽  
pp. 2044-2049 ◽  
Author(s):  
Bing Wu ◽  
Mark W. Bezpalko ◽  
Bruce M. Foxman ◽  
Christine M. Thomas

A Ti/Co heterobimetallic complex featuring a very short metal–metal triple bond has been synthesized. This complex promotes the reductive coupling reaction of aryl ketones into alkenes.


Author(s):  
Huacheng Zhang

Pillararenes trimer with particularly designed structural geometry and excellent capacity of recognizing guest molecules is a very efficient and attractive building block for the fabrication of advanced self-assembled materials. Pillararenes trimers could be prepared via both covalent and noncovalent bonds. The classic organic synthesis reactions such as click reaction, Palladium-catalyzed coupling reaction, amidation, esterification and aminolysis are employed to build covalent bonds and integrate three pieces of pillararenes subunits together into the “star-shaped” trimers and linear foldamers. Alternatively, pillararenes trimers could also be assembled in the form of host-guest inclusions and mechanically interlocked molecules via noncovalent interactions, and during those procedures, pillararenes units contribute the cavity for recognizing guest molecules and act as a “wheel” subunit, respectively. By fully utilizing the driving forces such as host-guest interactions, charge transfer, hydrophobic, hydrogen bonding, C—H…π and π—π stacking interactions, pillararenes trimers-based supramolecular self-assemblies provide a possibility in the construction of multi-dimensional materials such as vesicular and tubular aggregates, layered networks, as well as frameworks. Interestingly, those assembled materials exhibit interesting external stimuli responsiveness to e.g., variable concentrations, changed pH values, different temperature, as well as the addition/removal of competition guests and ions. Thus, they could further be used for diverse applications such as detection, sorption and separation of significant multi-analytes including metal cations, anions and amino acids.


Sign in / Sign up

Export Citation Format

Share Document