scholarly journals Experimental investigations and multi criteria optimization during machining of A356/WC MMCs using EDM

2022 ◽  
Vol 11 (2) ◽  
pp. 147-158
Author(s):  
Akash Singh ◽  
Karan Kumar ◽  
K. Gnana Sundari ◽  
Rishitosh Ranjan ◽  
B. Surekha

In the current paper, the authors are intended to manufacture the aluminum based metal matrix composite (MMC) employing the stir casting process. Further, the fabricated composite sample is investigated for machining characteristics during the die sink electrical discharge machining process (EDM). EDM is most commonly employed to satisfy the special needs of industry such as developing deep holes and complex contours from high strength materials such as composites, alloys, smart materials, and functionally graded materials. In the current study A356 and 4%, tungsten carbide (WC) powder are considered as matrix and strengthening materials respectively to fabricate the MMCs. During the machining activity, the input factors like discharge current (Ip), Voltage (Vg), Pulse On-Time (Ton), and flushing pressure (P) are optimized for achieving optimum surface roughness (SR), Tool Wear Rate (TWR) and Material Removal Rate (MRR). To estimate the ideal set of process factors grey regression analysis (GRA) is used. From the results, it was observed that the GRA is found to perform better than the RSM.

2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


2011 ◽  
Vol 418-420 ◽  
pp. 1478-1481 ◽  
Author(s):  
Manoj Modi ◽  
Gopal Agarwal

Abstract: Ti-6Al-4V are used extensively in aerospace, medical, marine and surgical implants etc. but it is hard to machine. Machining of advanced difficult-to-machine very hard materials (Ti-6Al-4V, composites and ceramics) is a big challenge. By conventional machining processes, their machining is not only costly but results in poor surface finish and shorter tool life. To meet these challenges, new hybrid machining process (HMP) has been developed. This article is focused on hybrid machining process comprising of conventional surface grinding along with electro-discharge machining between the periphery of metal bonded diamond grinding wheel and flat rectangular shape workpiece. This process has the advantage of shaping advance engineering materials and difficult-to- machine very hard materials. The experimental investigations of various input parameters like wheel RPM, duty factor, current and pulse on-time on material removal rate of Ti-6Al-4V in EDDSG process have been reported here on newly self designed & fabricated set up. Keywords: Electro-Discharge Diamond Surface Grinding (EDDSG), Hybrid Machining Process (HMP), Ti-6Al-4V.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


Author(s):  
R Rajeswari ◽  
MS Shunmugam

Electrical discharge machining is used in the machining of complicated shapes in hardened molds and dies. In rough die-sinking stage, attempts are made to enhance material removal rate with a consequential reduction in cycle time. Powder mix and ultrasonic assistance are employed in the electrical discharge machining process to create gap conditions favoring material removal. In the present work, experiments are carried out on hardened D3 die steel using full-factorial design based on three levels of voltage, current and pulse on time. The gap phenomena in graphite powder-mixed and ultrasonic-assisted rough electrical discharge machining are studied using a detailed analysis of pulse shapes and their characteristic trains. Two new parameters, namely, energy expended over a second ( E) and performance factor ( PF) denoting the ratio of energy associated with sparks to total discharge energy, bring out gap conditions effectively. In comparison with the conventional electrical discharge machining for the selected condition, it is seen that the graphite powder mixed in the dielectric enhances the material removal rate by 20.8% with E of 215 J and PF of 0.227, while these values are 179.8 J and 0.076 for ultrasonic-assisted electrical discharge machining with marginal reduction of 3.9%. Cross-sectional images of workpieces also reveal the influence of electrical discharge machining conditions on the machined surface. The proposed approach can be extended to different powder mix and ultrasonic conditions to identify condition favoring higher material removal.


2012 ◽  
Vol 159 ◽  
pp. 176-180 ◽  
Author(s):  
P. Sengottuvel ◽  
S. Satish Kumar ◽  
D. Dinakaran

Inconel 718 is a high nickel content super alloy having high strength at elevated temperatures and resistance to oxidation and corrosion. EDM process has many advantages over traditional manufacturing process during the machining of inconel 718. In this study experiments were conducted based on the L16 orthogonal array on inconel 718 material using tungsten-carbide (W-C) electrode tool material with kerosene as a dielectric fluid to determine the optimum EDM parameters along with circle(C), square(S), rectangle(R) and triangle (T) tool geometry which contribute to material removal rate (MRR), tool wear rate (TWR) &surface roughness (SR) in machining of inconel 718. Data were optimized using Desirability approach technique. Experimental results show that the current and pulse on time are most influencing parameters that are directly proportional to MRR and inversely proportional to TWR, SR. The rectangle tool geometry gave better results compared to other geometry


2019 ◽  
Vol 18 (02) ◽  
pp. 213-236 ◽  
Author(s):  
A. V. S. Ram Prasad ◽  
Koona Ramji ◽  
Murahari Kolli ◽  
G. Vamsi Krishna

In this study, the effects of the process parameters on their performance characteristics of lead-induced Ti-6Al-4V alloy were investigated. Taguchi’s [Formula: see text] orthogonal array (OA) has been used to conduct the experiments. Four process parameters were considered each at three levels. Peak current, pulse-on-time, servo voltage and pulse-off-time were selected as process parameters on performance characteristics, namely, material removal rate (MRR), surface roughness (SR) and dimensional deviation (DD). A multi-attribute decision-making (MADM) technique, namely, analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS), has been used to investigate the multiple response characteristics. The weights for performance characteristics are determined by AHP. Finally, analysis of variance method has been employed effectively to bring out the influence of the process parameters associated with each performance characteristic, namely, maximization of MRR and minimization of SR and DD.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2012 ◽  
Vol 445 ◽  
pp. 994-999 ◽  
Author(s):  
Mohammad Reza Shabgard ◽  
Mirsadegh Seyedzavvar

This paper details the correlation between the input parameters with the tool material on the machining response in comparison of two different combinations of toolworkpiece material, namely copper-H13 and graphite-H13. The considered machining input parameters included pulse current and pulse on-time, and the investigated characteristics of the machining response were the material removal rate, tool wear, and surface roughness of the workpiece. Furthermore, differences in pulse shapes and process stability between the copper-H13 and graphite-H13 combinations were investigated.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2096313
Author(s):  
Amresh Kumar ◽  
Neelkant Grover ◽  
Alakesh Manna ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar ◽  
...  

This article presents an experimental investigation to assess the influence of input process parameters of machinability of wire electrical discharge machining (WEDM) process for machining of triple-reinforced silicon carbide, graphite, and iron oxide hybrid aluminum (Al-6061) metal matrix composites. The composite work specimens, developed using stir casting process, have been processed through WEDM process by adopting a statistically controlled design of experimentation approach. Furthermore, analysis of variance and regression analysis have been performed to understand the influence of the input process parameters on material removal rate (MRR) and spark gap (SG) width. The statistical analysis highlighted the improvements in MRR and SG by 33.72% and −27.28%, respectively, upon adopting the suggested optimized range of input process parameters. Further, the morphology of the machined composite surfaces has also been studied using scanning electron microscopy and energy dispersive spectroscopy to report the phenomenon of formation of recast layer.


Sign in / Sign up

Export Citation Format

Share Document