scholarly journals Experimental investigation on hard turning using mixed ceramic insert under accelerated cooling environment

Author(s):  
Ramanuj Kumar ◽  
Ashok Kumar Sahoo ◽  
Purna Chandra Mishra ◽  
Rabin Kumar Das ◽  
Manoj Ukamanal
2019 ◽  
Vol 20 (1) ◽  
pp. 109 ◽  
Author(s):  
Hamdi Aouici ◽  
Mohamed Elbah ◽  
Asma Benkhelladi ◽  
Brahim Fnides ◽  
Lakhdar Boulanouar ◽  
...  

The hard turning process has an attracting interest in different industrial sectors for finishing operations of hard materials. However, it still presents disadvantages with respect to process capability and reliability. This paper describes a comparison of surface roughness, specific cutting force and flank wear between mixed ceramic CC650 (Al2O3 (70%) + TiC (30%)) and reinforced ceramic CC670 (Al2O3 (75%) + SiC (25%)) cutting tools when machining in dry hard turning of AISI 4140, treated at 52 HRC using the response surface methodology (RSM). A mathematical prediction model of the machining responses has been developed in terms of cutting speed, feed rate and cutting time parameters. Experimental observations show that the surface roughness obtained with the mixed ceramic insert significantly improved when compared with reinforced ceramic insert with a ratio of 1.44. In the same way, insert CC650 has better performance compared to reinforced ceramic inserts CC670, in terms of the specific cutting force and flank wear.


2013 ◽  
Vol 581 ◽  
pp. 176-181 ◽  
Author(s):  
Ildikó Maňková ◽  
Jozef Beňo ◽  
Marek Vrabel'

Hard turning provides an alternative to grinding in some finishing operations. This paper deals with analysis of part surface finishing when turning hardened steel heat-treated on hardness of 46, 55 and 60 HRC with mixed oxide ceramic inserts. Average surface roughness Ra has been widely used in industry it is known that the single parameter Ra is inadequate to define the functionality of a surface. Two different surfaces with similar values of Ra can behave differently under loading conditions. The surface profile 2D and 3D parameters are assessed. The influence of workpiece hardness on surface roughness parameters and cutting force components is investigated. Results show that finish hard turning with mixed ceramic tool produces surface profile comparable to those produced by grinding.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095988
Author(s):  
Pham Minh Duc ◽  
Le Hieu Giang ◽  
Mai Duc Dai ◽  
Do Tien Sy

The main purpose of this study is to investigate the influence of tool geometry (cutting edge angle, rake angle, and inclination angle) and to optimize tool wear and surface roughness in hard turning of AISI 1055 (52HRC) hardened steel by using TiN coated mixed ceramic inserts. The results show that the inclination angle is the major factor affecting the tool wear and the surface roughness in hard turning. With the increase in negative rake and inclination angles, the tool wear decreases, and the surface roughness increases. However, the surface roughness will decrease when the inclination angle increases to overpass a certain limit. This is a new and significant point in the research of the hard turning process. From this result, the large negative inclination angle (λ = −10°) should be applied to reduce the surface roughness and the tool wear simultaneously. With the optimal cutting tool angles in the research, the hard machining process is improved remarkably with decreases of surface roughness and tool wear 8.3% and 41.3%, respectively in comparison with the standard tool angles. And the proposed tool-post design approach brings an effective method to change the tool insert angles using standard tool-holders to improve hard or other difficult-to-cut materials turning quality.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


Sign in / Sign up

Export Citation Format

Share Document