Development and Evaluation of Sunscreen Cream Containing Benzophenone-3 Microspheres for Enhancing Sunscreen Activity

Author(s):  
Shruti Rathore ◽  
Alpana Ram ◽  
Dipesh Lall ◽  
Bhagyashree Agrawal ◽  
Pranay Soni ◽  
...  

In present work, sunscreen cream containing Benzophenone – 3 microspheres were prepared and an attempt were made to deliver sunscreening agent in sustained release manner from microspheres containing cream. Microspheres are prepared by emulsion cum thermal gelation technique and the o/w emulsion was selected as cream. Optimized batch of microspheres were taken and mixed with cream. This cream was subjected to determination of various parameters like color, pH, rancidity, viscosity, spreadability and extrudability. In vitro drug release study and SPF were determined. Cream has also been evaluated for in vivo ocular toxicity testing, skin irritancy testing, testing for sensitizing potential, and photosensitivity test. Results revealed that no ocular irritation and skin irritation occurs. Physical stability and chemical stability were tested. Sunscreen cream is homogeneous, smooth on application, having good spreadability and extrudability and milky white in color. The pH was found to be 7.1. Cream shows viscosity 32840 cps, no rancidity and no phase separation on centrifugation were observed. In vitro drug release study revealed that both 1% and 2% microspheres containing cream follow zero order release kinetics which means release rate was found constant. In vitro SPF was evaluated mean SPF of 1% cream was 13.74 and mean SPF of 2% cream was 31.47. Physical stability testing revealed that cream was not greatly affected by various stress conditions like freeze-thaw (-5 to +5°C), shaking (100-500 rpm) and centrifugation (1000-5000 rpm) except 5000 rpm. Results of chemical stability revealed that the formulations exhibited good stability at elevated temperature between 25-45°C and slight changes may occur which are reversible in nature. In present work attempt were made to develop microspheres containing sunscreen cream and it was characterized for various parameters. Sunscreen cream was safe and effective and also showed sustain drug release.

Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


Author(s):  
SUJAID THAYYILAKANDY ◽  
GAYATHRI P. S. ◽  
ARJUN K. K. ◽  
GAYATHRI KRISHNAKUMAR ◽  
SREEJA C. NAIR

Objective: To formulate and characterize. Phenobarbital sodium loaded sublingual patch using biodegradable, mucoadhesive, fast-dissolving natural polymer pullulan for immediate management of epileptic seizures. Methods: Phenobarbital sodium loaded sublingual patches were prepared by the solvent casting method and were subjected to various physicochemical evaluation parameters to find the optimized sublingual patch. The in vitro drug release study and kinetic model of the optimized formulation was also carried out. The stability study of the optimized Phenobarbital sodium loaded sublingual patch was also done. Results: From in vitro drug release study, it was found that Phenobarbital sodium loaded sublingual patch (S4) exhibited a maximum drug release of 96.24±1.27% at the end of 60 min compared to other formulations indicating a faster drug release from the formulation with release kinetics as Higuchi diffusion model. In fact, a notable release data was obtained between 0.5 to 8 min by all formulations, specifically S4 formulation (20.84±1.97% and 77.22±2.41% drug release at the end of 0.5 min and 8 min respectively) showed a better percentage release profile in comparison with other formulations. Such a trend is vital to deliver the drug at a faster rate to promote immediate effect for managing the fatal and complicated seizure. Considering the physicochemical property and in vitro drug release data, S4 formulation was regarded as an optimized one. The stability study also confirmed that S4 formulation is stable at refrigeration conditions. Conclusion: The formulated Phenobarbital sodium loaded sublingual patch is an effective drug delivery carrier which enables faster drug release to manage epileptic seizure.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


2020 ◽  
Vol 32 (2) ◽  
pp. 1785-1791
Author(s):  
Dhanya Arambath Thankappan ◽  
Haridas Karickal Raman ◽  
Joby Jose ◽  
Sudheesh Sudhakaran

Author(s):  
GITA CHAURASIA ◽  
NARENDRA LARIYA

Objective: Ivabradine hydrochloride (IH), a benzazepine derivative used to treat cardiovascular disease angina pectoris. In this study IH-loaded novel carrier systems transfersomes (TFs) and conventional liposomes (CLs) were developed and compared for their efficacy to enhance the stability of drugs from degradation. Methods: TFs formulations (TF-1, TF-2 and TF-3) were prepared by using different biocompatible surfactants; tween-80 (TW), span-80(S) and sodium deoxycholate (SC) in the concentration ratio of 15 parts with 85 parts of soy phosphatidylcholine as phospholipid by thin-film hydration method. These vesicles were compared with CLs formulation (L-1) prepared in 7:3 molar ratio of soy phosphatidylcholine: cholesterol by following the same method. These vesicles were compared for physical appearance, vesicle shape, and size, percentage drug entrapment efficiency (%DEE), deformability index (DI), in vitro percentage cumulative drug release study, and physical stability studies. The chosen optimized novel carriers were observed under scanning electron microscopy. Results: The compared data demonstrated that the physical appearance for all vesicles was turbid and had a spherical shape. The size distribution was in the range of 129.0 nm to 273.5 nm in vesicles. The %DEE (79.0±0.94) and DI (35.0±1.9) was found maximum in TF-1 formulation that was 2.3 times higher than L-1 formulation. The in vitro percentage cumulative drug release study followed second-order polynomial kinetics that was 2.0 times higher than L-1and 2.9 times higher than the plain drug in 30 min (90.4±0.06%) from TF-1. The vesicles were found to be stable at refrigeration conditions. Conclusion: Thus, amongst of all vesicles TW loaded TFs (TF-1) was chosen as an excellent novel vesicular carrier for hydrophilic drugs due to its higher deformability behavior than CLs that protects the certain drugs from biodegradation and provides stability.


Sign in / Sign up

Export Citation Format

Share Document