An Overview on Invasomes: Novel Vesicular Carrier for Transdermal Drug Delivery

Author(s):  
Swarnima Pandey ◽  
Vikas Srivastava

Multifunctional organ of the human body is the skin and it has less porousness across the layer corneum and this layer is the hindrance for dynamic specialists. To expand the penetrability of dynamic specialists, novel vesicular transporter invasomes are presented. Invasomes give different preferences including upgrading patient consistence, improving the medication adequacy and increment the pervasion of hydrophilic medications. This is a vesicular transporter that improves the Transdermal infiltration contrasted with ordinary liposomes. Invasomes comprise of phospholipid, terpenes, ethanol, and water. These constituents assume a significant part in improving its infiltration capacity. In this review paper, a wide presentation of TDDS (transdermal medication conveyance framework) is clarified and different segments, strategies for arrangement, segments, benefits, and faults of invasomes are featured.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 693
Author(s):  
Prateek Ranjan Yadav ◽  
Tao Han ◽  
Ololade Olatunji ◽  
Sudip K. Pattanayek ◽  
Diganta Bhusan Das

In the last two decades, microneedles (MNs) have received significant interest due to their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have found applications in a range of research and development areas in drug delivery. They have been prepared using a variety of materials and fabrication techniques resulting in MN arrays with different dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters play crucial roles in determining the drug release profiles from the MNs. Developing mathematical modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances. These will then be helpful for pharmaceutical and biotechnological industries as well as professionals working in the field of regulatory affairs focusing on MN based TDD systems. This is because modelling has a great potential to reduce the financial and time cost of both the MNs’ studies and manufacturing. For example, a number of robust mathematical models for predicting the performance of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical properties of the skin. In addressing these points, this review paper aims to highlight the current status of the MN modelling research, in particular, the modelling, simulation and optimisation of the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is discussed within this paper. Thus, this review paper provides a better understanding of the modelling of the MN mediated drug delivery process.


Author(s):  
Michael S. Diehl ◽  
Brian D. Jensen

A number of designs for microneedles have recently been developed to facilitate the painless injection of medications, such as insulin, into the human body [1–6]. The injections are painless because the needles penetrate the skin predominantly in the epidermal layer of skin which contains no nerve endings. Some microneedles do not contain inner channels and are simply coated with medication, the intent being that the transdermal drug delivery will take place through absorption over time. A more effective method of medicinal transfer is to equip the microneedles with an inner channel to facilitate rapid delivery of the medication to the skin.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2015 ◽  
Vol 21 (20) ◽  
pp. 2848-2866 ◽  
Author(s):  
Nauman Khan ◽  
Mohd Harun ◽  
Asif Nawaz ◽  
Nurulaini Harjoh ◽  
Tin Wong

Sign in / Sign up

Export Citation Format

Share Document