scholarly journals Soil nutrient status under different agro-climatic zones of Jammu region, India

2020 ◽  
Vol 1 (1) ◽  
pp. 18-24
Author(s):  
Sanjay- Swami ◽  

In the North Western Himalayas, particularly Jammu region, where 85% of people depend on agriculture and allied sectors, 70% of agriculture is rain-fed. Various factors, especially land use pattern and variations in climatic conditions affect the soil fertility and nutrient contents. However, information on essential nutrients in the soil across the region is meager. An attempt has been made to study the soil nutrient status under different agro-climatic zones of Jammu region. Seven hundred seventy surface soil samples (0-15 cm) from sub-tropical, intermediate and temperate zones of Jammu region were collected and analyzed for soil texture, pH, electrical conductivity (EC), organic carbon (OC), CaCO3, CEC, available macro nutrients (N, P, K, S) and micronutrients (Fe, Cu, Zn, Mn). The results indicated large variation within the soils of each zone. The amount of all the available nutrients was more in the soils of temperate zone than those of other zones. The soils of sub-tropical zones were low in available N, P, S and Zn and to some extent in K. Organic matter content, clay and silt content of the soil vis-à-vis cation exchange capacity were found to be the main factors controlling the available nutrient content of the studied soils.

2021 ◽  
Vol 30 (2) ◽  
pp. 141-149
Author(s):  
Tasnim Zannat ◽  
Farhana Firoz Meem ◽  
Rubaiat Sharmin Promi ◽  
Umme Qulsum Poppy ◽  
MK Rahman

Twelve soil and twelve leaf samples were collected from twelve litchi (Litchi chinensis Sonn.) orchards from different locations of Dinajpur to evaluate some physico-chemical properties and nutrient status of soil, and concentration of nutrients in litchi leaf. The pH of the soil varied from very strong acidic to medium acidic (4.8 - 5.7), organic matter content varied from 0.84 - 1.88%, EC varied from 302.4 - 310.2 μS/cm. The dominant soil textural class was clay loam. The average particle density was 2.49g/cm3. Total N, P, K and S in soils were 0.053 - 0.180%, 0.02 - 0.07%, 0.046 - 0.370 meq/100 g, and 0.015 - 0.028%, respectively. Available N, P, K, S, Zn, Fe, Mn and B in soils 30.40 - 57.8 mg/kg, 10.53 - 14.33 mg/kg, 0.03 - 0.32 meq/100 g, 20.03-34.80 mg/kg, 0.68-1.50 μg/g, 31.8 - 41.5 μg/g, 6.75 - 7.39 μg/g and 0.25-0.51 μg/g, respectively. The concentration of total N, P, K, S, Zn and Mn in the leaf were 1.74 - 2.20%, 0.11 - 0.188%, 0.104- 0.198%, 0.129 - 0.430%, 12 - 14 μg/g and 30 - 74 μg/g, respectively. The overall results indicated that the fertility status of the soils under the litchi plantation in the Dinajpur area are medium fertile. So, farmers could be advised to grow litchi plants after applying amendments to the soils to improve the physico-chemical properties in the Dinajpur area of Bangladesh. Dhaka Univ. J. Biol. Sci. 30(2): 141-149, 2021 (July)


Author(s):  
M. A. Nadeem ◽  
Vikas Singh ◽  
R. K. Dubey ◽  
A. K. Pandey ◽  
Barun Singh ◽  
...  

A field experiment was carried out on cowpea (Vigna unguiculata (L.) variety Kashi Kanchan during summer season at the experimental farm, department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh. The experiment was laid out in factorial complete randomized block design with 12 treatments i.e. three levels of phosphorus [control 0 kg(P0), 20 kg (P1) and 40 kg (P2) /ha] and four levels of bio-fertilizer [control (B0), Rhizobium10 ml/kg seed(B1), PSB 10 ml/kg seed (B2) and Rhizobium + PSB both 10 ml/kg seed (B3)] with three replications. The uniform dose of nitrogen (N) and potassium (K) @ 20 kg/ha along with 10 t/ha FYM (Farm Yard Manure) were applied to all the treatments. Result indicated that the application of P2 (40 kg P/ha) significantly increased the plant height, leaf area index, stem girth, number of nodules per plant, number of branches per plant , total dry matter, pod yield, available soil nutrient status viz., pH, N, P, K, organic carbon and NPK content in plant after harvesting. Similarly, seed inoculation with B3 (Rhizobium + PSB) significantly enhanced the growth, yield, soil nutrient status and nutrient content in plant over single inoculation of Rhizobium and PSB. Combined inoculation of seed with Rhizobium + PSB (B3) along with 40 kg P/ha (P2) significantly increased the stem girth (1.84 cm), total dry matter (13.91g/plant), green pod yield (196.37g/plant and 120.90q/ha), soil nutrient status viz., pH(6.20), available N (370.89 kg/ha), available P (38.57 kg/ha), available K (168.77 kg/ha), organic carbon (2.80%) and N, P and K (0.17%, 0.16% and 0.39%) content over rest of treatment combination.


2016 ◽  
Vol 11 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Khursheed Dar ◽  
K.A. Sahaf ◽  
Afiffa SKamili ◽  
Latief Ahmad ◽  
M. A Malik

An investigations on nutrient analysis of soil under the different agro-climatic zones of Kashmir and Ladakhviz Temperate (Pattan, Baramulla),Sub temperate(Gurez,Bandipora) and Cold Arid(Kargil,Ladakh) was carried out during 2012 and 2013.The studies revealed that soils were alkaline in their reaction with slightly higher pH (8.2) recorded at Kargil followed by Pattan (7.9) and Gurez (7.6). Electrical conductivity was highest (0.23dSm-1) at Pattan and least at Kargil (0.08dSm-1). Pattan soils were richer in organic carbon with an average value of 1.02%. Varied results were obtained with respect to available soil nitrogen, the highest being recorded at Pattan with an average value of 372.8 kg ha-1 Gurez recorded251.5 kg ha-1 and Kargil 184.9 kg ha-1. Pattan recorded maximum (22.45 kg ha-1) soil available phosphorus while the sulphur was recorded highest (53.40 kg ha-1) at Kargil.Among the three agro-climatic zones, (187.30 kg ha-1), exchangeable calcium (17.56 centimole) and exchangeable magnesium (5.54 centimole).


Author(s):  
Anju B. Raj ◽  
Sheeja K. Raj ◽  
K. Prathapan ◽  
N.V. Radhakrishnan

Background: Cowpea [Vigna unguiculata (L.) Walp] is the most widely cultivated pulse crop of Kerala. Deficiencies of micronutrients viz., Zn and B are a common problem in cowpea. Foliar nutrition is very effective to correct the micronutrient deficiencies in pulses but it is too laborious. Seed pelleting and priming are two simple cost-effective methods to overcome the micronutrient deficiencies. The present study aimed to study the effect of seed invigouration with zinc sulphate and borax and to evaluate its effect along with Trichoderma viride on nutrient uptake and soil nutrient status of grain cowpea.Methods: The experiment was conducted at Coconut Research Station, Balaramapuram, Thiruvananthapuram, Kerala. The experiment was conducted in RBD with 8 seed invigouration treatments and a control during Rabi 2018.Result: Seed invigouration treatments had significant effect on nutrient uptake and nutrient availability. Seeds primed in ZnSO4 0.05 per cent for 4h recorded the highest NPK uptake by crop, the highest soil organic carbon content, available N and Zn status. Zinc uptake by crop and available soil K status were recorded the highest in seed primed in ZnSO4 0.05 per cent for 4h + Trichoderma viride seed treatment 10 g kg-1 seed. Boron uptake by crop and available soil B and P status were recorded the highest in seeds pelleted with borax 100 mg kg-1 seed. Hence it can be concluded that seed primed in ZnSO4 with 0.05 per cent for 4 h improved the Zn availability and uptake and seed pelleting with borax 100 mg kg-1 improved the B availability and uptake of grain cowpea.


Author(s):  
Ravindra Kumar ◽  
A. B. Turkhede ◽  
Shrimohan Meena ◽  
R. K. Nagar

The field experiment was conducted during kharif season of 2014-15. The experiment was laid out in randomized block design, replicated thrice with eleven cropping systems. Significantly highest NPK uptake (38.97, 13.39 and 34.85 kg ha-1 respectively) was recorded in the cropping system of sole cotton. Significantly highest available N (222.75 kg ha-1) was recorded in sole blackgram and maximum available P (21.52 kg ha-1) was recorded in cotton + cowpea intercropping system. Cotton + clusterbean intercropping system was recorded significantly highest available K (355.60 kg/h


2013 ◽  
Vol 6 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Donald L. Hagan ◽  
Shibu Jose ◽  
Kimberly Bohn ◽  
Francisco Escobedo

AbstractWe assessed pre- and posteradication nitrogen and phosphorus dynamics in longleaf pine sandhill stands severely affected by cogongrass. Across a 7-yr posteradication (glyphosate + imazapyr) “recovery chronosequence,” which included untreated cogongrass, uninvaded reference, and treated plots, we analyzed soils for total N, potentially available P (Mehlich-1 [M1]), pH, and organic matter content. We also used resin bags to assess fluxes of plant available N and P in the soil solution. Additionally, we used litterbags to monitor the decomposition and nutrient mineralization patterns of dead rhizome and foliage tissue. Our results indicate similar total N and M1-P contents in both cogongrass-invaded and uninvaded reference plots, with levels of M1-P being lower than in cogongrass plots for 5 yr after eradication. Soil organic matter did not differ between treatments. Resin bag analyses suggest that cogongrass invasion did not affect soil nitrate availability, although a pulse of NO2+ NO3occurred in the first 3 yr after eradication. No such trends were observed for ammonium. Resin-adsorbed PO4was lowest 3 yr after eradication, and pH was highest 5 yr after eradication. Our litterbag study showed that approximately 55% of foliar biomass and 23% of rhizome tissue biomass remained 18 mo after herbicide treatment. Substantial N immobilization was observed in rhizomes for the first 12 mo, with slow mineralization occurring thereafter. Rapid P mineralization occurred, with 15.4 and 20.5% of initial P remaining after 18 mo in rhizomes and foliage, respectively. Overall, our findings indicate that cogongrass invasion has little to no effect on soil nutrient cycling processes, although some significant—but ephemeral—alterations develop after eradication.


Author(s):  
Subrata Mandal ◽  
Mrinmoy Karmakar ◽  
F. H. Rahman

A GPS based soil sampling and testing was done in 10 blocks of Birbhum district under monitoring of Rathindra Krishi Vigyan Kendra, Birbhum during 2018 and 2019. In this regard, some soil chemical properties were analysed through Mridaparikshak (soil testing kit). After statistical analysis, pooled data of different soil nutrients were compared based on GPS to prepare a data base for easy fertiliser recommendation of different crops without soil testing. It was found that soil pH (6.29 to 5.50), soil O.C (0.77 to 0.31%), available K (292.12 to 226.60 kg/ha), available B (0.81 to 0.17 mg/kg)  and available Fe (44.4 to 21.5 mg/kg) had been decreased with the increase in latitude from 23°04' 07.4500" to 24°11' 15.3400" and longitude. Recommendation of more liming, organic manure, K, B may be done accordingly. On the other hand, available N (184.0 to 296.95 kg/ha), available P (15.05 to 62.76 kg/ha), available S (11.43 to 44.52 kg/ha) and available Zn (0.20 to 1.04 mg/kg) showed sharp direct relation with the increase in Latitude as supported by higher CV value.


Author(s):  
G. S. Jagadeesha ◽  
H. C. Prakasha ◽  
M. N. Shivakumara ◽  
K. Govinda ◽  
S. B. Yogananda

A field experiment was conducted at Zonal Agricultural Research Station, VC Farm, Mandya during kharif 2017, summer 2018, kharif 2018 and summer 2019 to study the effect of rock phosphate enriched compost on soil nutrient status after harvest of finger millet-cowpea cropping sequence. Prior to initiation of the field experiment, three different composts viz., urban solid waste compost (USWC), vermicompost and farm yard manure (FYM) were enriched with rock phosphate at 5 per cent. Field experiment consisting of eleven treatment combinations comprising recommended N and K, and P through varied levels of enriched composts. The experiment was laid out in RCBD design with three replications and the test crops were finger millet and cowpea. The initial P2O5 of the experimental site was very high (133.58 kg ha-1). The results revealed that application of recommended N and K + 75 per cent P supplied through enriched USWC (T5) had significantly higher organic carbon (0.56 and 0.58%) in pooled data of both finger millet and cowpea, respectively. Available N (241.94 and 224.86 kg ha-1), P2O5 (138.69 and 120.99 kg ha-1) and K2O (153.92 and 135.31 kg ha-1) were recorded significantly higher in T5 of finger millet and cowpea, respectively. Similarly, in pooled mean, exchangeable Ca [4.15 and 4.04 C mol (P+) kg-1] and Mg [2.16 and 2.05 C mol (P+) kg-1] were recorded significantly higher in treatment which received recommended N and K + 75 per cent P supplied through enriched vermicompost (T8) in both finger millet and cowpea, respectively. The decrease of available P2O5 was 20.98 per cent from initial (133.58 kg ha-1) to final crop (summer 2019) (105.55 kg ha-1).


Author(s):  
Gazala Nazir ◽  
V. K. Sharma ◽  
Deepika Suri ◽  
. Anjali

Detailed knowledge of the soil nutrient status is required in site-specific crop production systems. Moreover, the vertical distribution of plant nutrients is most important for plant production. Therefore, the study was conducted to assess the depth-wise soil fertility status of low and mid hill zones of Himachal Pradesh based on thirty-one (31)soil profiles. Geo-referenced depth-wise soil samples were collected. These thirty-one (31) soils sampling sites were selected to represent the cultivated soils (Entisols, Alfisolsand Inceptisols) under major land-use systemsof low and mid-hill zones of Himachal Pradesh. The results of the soil nutrient status revealed that low to medium content of available N, P and S, low to medium content of available K except fewsubsurface horizons in Inceptisolswas found in most of the soils of low hill zone. Under different land-use systems in mid-hill zone, medium to high content of available N and K, low to medium of available P, low to high of available Swas found in most of the soils. Generally, surface soils had a higher mean values of N, P, S, Cu and Zn and lower values of K, Ca, Mg, Fe and Mn. Alfisols had higher value of all the nutrients as compared to Entisols and Inceptisols.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
Anita Osvalde ◽  
Gunta Cekstere ◽  
Andis Karlsons ◽  
Jolanta Pormale

In Latvia, the first commercial highbush blueberry (Vaccinium corymbosum L.) plantings have been established on a few hectares at the end of the 1990th. Since then, a remarkable growth has noticed and today the total cultivated area reaches 280 hectares. An increasing market demand for fresh and processed berries provides a future upward trend in the development of blueberry crop in Latvia. In general, blueberry is a highly specialized crop that has definite soil agrochemical and climatic requirements. There are two main soil types used for blueberry cultivation in Latvia: well-drained acid sandy soils with high organic matter content and sphagnum peat soils. Evaluation and management of plant mineral nutrition in such diverse soils are based on guidelines for the particular type of growing medium. A long-term study (2006-2017, divided into three periods: 2006-2009, 2010-2013, 2014-2017) was done to find out the nutrient status of blueberry soils in Latvia.  In total, 330 mineral and peat soil samples were collected from the upper layer of soils (0 - 20 cm) across blueberry plantations in Latvia and tested on plant available nutrients (N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, Mo, B), as well as soil pHKCl and electrical conductivity. In general, more than 50% of blueberry soils had low content of N, S, Mo and B, as well as a high level of Mn over the study period of 2006-2017. Less than 25% of samples in the optimum range indicated on N as the most deficient nutrient.


Sign in / Sign up

Export Citation Format

Share Document