Application Study of Newton-Raphson-Type Nonlinear MPC for Hydrostatic Transmissions Under Disturbance and System Uncertainty

2021 ◽  
Vol 1 (1) ◽  
pp. 21-29
Author(s):  
Ngoc Danh Dang

Model predictive control is well established and has a huge practical relevance in many industrial applications, especially for chemical or thermal plants. This paper presents the design and the implementation of a nonlinear model predictive control aiming at an accurate tracking control of desired output trajectories under disturbances and uncertainties for a nonlinear hydrostatic transmission system with multiple control inputs, which represents a fast mechatronic system. The benefit of this solution is that it can be easily adapted to either velocity tracking control or torque tracking control -- which is not the case with alternative model-based approaches. The control design is based on a numerical optimization within a moving horizon using the Newton-Raphson method in combination with the optimization-over-some variables technique. The unmeasurable system state variables as well as the system disturbances are reconstructed by an unscented Kalman filter which is well suited for nonlineaer systems subject to process and measurement noise. The proposed control scheme is investigated by simulations and experimentally validated on a test rig at the Chair of Mechatronics, University of Rostock. The results indicates the robustness of the proposed control structure by a high tracking accuracy despite system disturbances and uncertainties.

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


Author(s):  
M P R Prasad

This paper considers kinematics and dynamics of Remotely Operated Underwater Vehicle (ROV) to control position, orientation and velocity of the vehicle. Cascade control technique has been applied in this paper. The pole placement technique is used in inner loop of kinematics to stabilize the vehicle motions. Model Predictive control is proposed and applied in outer loop of vehicle dynamics to maintain position and velocity trajectories of ROV. Simulation results carried out on ROV shows the good performance and stability are achieved by using MPC algorithm, whereas sliding mode control loses its stability when ocean currents are high. Implementation of proposed MPC algorithm and stabilization of vehicle motions is the main contribution in this paper.


Sign in / Sign up

Export Citation Format

Share Document