scholarly journals Shear Behavior in Beams Reinforced with Glass-Fiber Reinforced Polymer Bars (GFRPB) without stirrups

2021 ◽  
Vol 9 (1) ◽  
pp. 72-78
Author(s):  
Osama Daoud ◽  
Ahmed Fadul

The behavior and shear strength of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars was investigated. Total of six reinforced concrete beams without stirrups were constructed and tested up to failure. The beams measured 1400 mm long, 150 mm wide and 300 mm deep and were tested in two-points bending with constant shear span 350 mm in all tested beams, and shear span to depth ratio a/d 1.37. The test variable was the reinforcement ratio. The test beams included three beams designed as tension control (T.C) with GFRP bars, three beams designed as compression control (C.C) with GFRP bars. The test results were compared with predictions provided by ACI 440.1R-15 design guideline and proposed equations in the literature. The test results indicated that the relatively low modulus of elasticity of FRP bars resulted in reducing shear strength. In addition, shear strength provided by ACI 440.1R-15 guideline underestimate shear strength capacity in which proposed equations in the literature had given better prediction than ACI 440.1R-15. The failure mode in T.C beams is diagonal tension by bond failure not by rupture of FRP and C.C beams is shear compression by crushing of the web in extreme fiber.  

2017 ◽  
Vol 747 ◽  
pp. 220-225
Author(s):  
Alberto Pedro Busnelli ◽  
Ruben Edgardo López ◽  
Jorge Carlos Adue

This is the presentation of the research carried out by the Faculty of Engineering at Universidad Nacional de Rosario on the use of pultruded Glass Fiber Reinforced Polymer (GFRP) plates to increase the flexural strength of reinforced concrete beams.Pultruded plates are the type of elements made of composite materials which are most widely used for this kind of strengthening. Although around the world the material used for these plates is carbon fibers, its high cost prevents its widespread use in our country.One of the aims of our research program is, precisely, to verify whether it is possible to substitute such plates for significantly cheaper glass fiber elements manufactured in Argentina. The test results have proved that this alternative is feasible.What's more, the greater thickness of the glass fiber plates allows the use of additional anchor bolts. These bolts provide the system with post-critical resistance and ductility-characteristics which are absolutely necessary, for example, in structures in seismic areas.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 893 ◽  
Author(s):  
Minkwan Ju ◽  
Kyoungsoo Park ◽  
Cheolwoo Park

This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.


2013 ◽  
Vol 594-595 ◽  
pp. 812-817 ◽  
Author(s):  
Azlina Abdul Hamid Noor ◽  
Thamrin Rendy ◽  
Ibrahim Azmi ◽  
Hanizah Abdul Hamid

This paper presents a part of the results from an experimental study of strain distribution on reinforcement of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. Under static loading conditions, eight concrete beams reinforced with GFRP bars were tested and as comparison eight beams with steel reinforcement were also tested. All of the beams were prepared with varying ratios of longitudinal reinforcement bars and stirrups. The effect of shear span-effective depth ratio on strain distribution of longitudinal reinforcement was also observed. Furthermore, the behavior of strain on stirrups due to different materials of longitudinal reinforcement was also discussed in this report. The test results show that the ratio of longitudinal reinforcement significantly influence the strain distributions on reinforcement where the beams with higher ratio exhibit higher strain. Moreover, it was also obtained that the different types of longitudinal reinforcement considerably influences the strain behavior on stirrups as higher strain was observed in beams reinforced with GFRP bars.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Mohamed S. Moawad ◽  
Ahmed Fawzi

AbstractOne of the major advantages of using glass fiber-reinforced polymer bars as a replacement to the traditional steel-reinforced bars is its lightweight and high-resistant to corrosion. This research focuses on the performance of concrete beams partially/fully reinforced with glass fiber-reinforced polymer bars with 50% of GFRP bars were used to reinforce partially concrete beams at flexural zone. While 100% of GFRP bars were used to reinforce fully concrete beams at flexural and compression zones with different concrete compressive strength.This study reported the test results of 6 reinforced concrete beams with dimensions 150 × 200mm and a 1700-mm clear span length subjected to a four-point loading system. The tested beams were divided into three groups; the first one refers to the glass fiber-reinforced polymer bar effect. The second group is referring to the effect of concrete compressive strength, while the third group is referring to the effect of the GFRP bar volume ratio.Using longitudinal GFRP bars as a full or partial replacement of longitudinal steel bar reinforcement led to an increase in the failure load capacity and the average crack width, while a decrease in ductility was reported with a lower number of cracks. Increasing the concrete compressive strength is more compatible with GFRP bar reinforcement and enhanced the failure performance of beams compared with normal compressive strength concrete.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
S.-K. Lee ◽  
S.-Y. Yoo ◽  
C.-G. Park

This study evaluated the performance of a hybrid panel that can overcome the current problem of corrosion of the steel panels of improved movable weirs when they are exposed to a sulfate and calcium chloride environment such as sea water. A hybrid panel with glass fiber-reinforced polymer (GFRP) layers on both sides of a steel panel means that the central panel is not exposed to the external elements, which can avoid corrosion problems. In this study, to maximize the hybrid panel’s strength and durability, the moisture absorption characteristics and the durability in an accelerated environment were evaluated. The test results were considered to indicate no durability issues as the final absorption ratio was approximately 2.0% or less in all environments. Also, from the accelerated deterioration test results when the steel panel processed by sand blasting was applied in all accelerated deterioration environments, it satisfied the residual strength level of 65% or more. However, in the case without surface processing, upon exposure to MgSO4 solution, it did not satisfy the standard residual strength level of 65%. These results show that sand blasting on the surface of a steel panel is adequate for hybrid panels for improved movable weirs.


Sign in / Sign up

Export Citation Format

Share Document