Pressure-Wave Energy Relationship during IABP Counterpulsation in a Mock Circulation: Changes with Angle and Assisting Frequency

2012 ◽  
Vol 35 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Giovanni Biglino ◽  
Christina Kolyva ◽  
Ashraf W. Khir
2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Soichi Tanaka ◽  
Masako Seki ◽  
Tsunehisa Miki ◽  
Kenji Umemura ◽  
Kozo Kanayama

Abstract The purpose of this paper was to confirm the influence of pulsive pressure waves on the liquid penetration into wood in the semi-opened container. Wood block sample was irradiated by the pulsive pressure waves in the semi-opened container filled with water used as a liquid. The irradiation was also performed in the closed container for the comparison. The water penetration into the sample was promoted by the pressure-wave irradiation. There was little difference in the degree of the penetration between the closed and the semi-opened containers. It was presumed from the measured hydraulic pressure that the pressure-wave energy irradiated on the sample in the closed container was higher than that in the semi-opened container. It was also presumed that the cavitation generation was promoted in the semi-opened container. This indicates that the cavitation as well as the pressure waves themselves affected the liquid penetration into wood. The compressive deformation of the sample irradiated in the semi-opened container was slightly smaller than that in the closed container. This indicates that the pulsive pressure-wave irradiation in the semi-opened container promoted the liquid penetration into wood with less compressive deformation.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
R. Fortes-Patella ◽  
G. Challier ◽  
J. L. Reboud ◽  
A. Archer

An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.


2019 ◽  
Vol 10 (4) ◽  
pp. 681-693 ◽  
Author(s):  
Reza Fatahi-Alkouhi ◽  
Babak Lashkar-Ara ◽  
Alireza Keramat

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
M Grossmann ◽  
J Landrath ◽  
I Merkel ◽  
R Holland ◽  
W Juettner ◽  
...  

Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 158-165
Author(s):  
Roman S. Kulikov ◽  
◽  
Aleksandr A. Chugunov ◽  
Nikita I. Petukhov ◽  
Ivan R. Indrikov ◽  
...  

2013 ◽  
Vol 61 (3) ◽  
pp. 613-621 ◽  
Author(s):  
W. Barnat

Abstract The article presents an approach to modeling the internal membrane pressure wave inside a sealed structure. During an explosion near a vehicle when a pressure wave reaches a hull, a pressure wave inside arises due to the hull’s bottom and the deformation of sides. They act like the piston - membrane. This membrane transfers the pressure impulse into the vehicle’s interior. A pressure increase causes the damage of internal organs or even death of occupants. In case of an armor penetration the pressure increase may be even larger. One of basic methods to protect a crew is to open hatches. However, such a method cannot be used in a contaminated area.


Sign in / Sign up

Export Citation Format

Share Document