RFID as a New ICT Tool to Monitor Specimen Life Cycle and Quality Control in a Biobank

2011 ◽  
Vol 26 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Umberto Nanni ◽  
Antonella Spila ◽  
Silvia Riondino ◽  
Maria Giovanna Valente ◽  
Paolo Somma ◽  
...  

Background Biospecimen quality is crucial for clinical and translational research and its loss is one of the main obstacles to experimental activities. Beside the quality of samples, preanalytical variations render the results derived from specimens of different biobanks or even within the same biobank incomparable. Specimens collected along the years should be managed with a heterogeneous life cycle. Hence, we propose to collect detailed data concerning the whole life cycle of stored samples employing radio-frequency identification (RFID) technology. Methods We describe the processing chain of blood biosamples that is operative at the biobank of IRCSS San Raffaele, Rome, Italy (BioBIM). We focus on the problem of tracing the stages following automated preanalytical processing: we collected the time stamps of all events that could affect the biological quality of the specimens by means of RFID tags and readers. Results We developed a pilot study on a fragment of the life cycle, namely the storage between the end of the preanalytics and the beginning of the analytics, which is usually not traced by automated tools because it typically includes manual handling. By adopting RFID devices we identified the possible critical time delays. At 1, 3 and 6 months RFID-tagged specimens cryopreserved at -80°C were successfully read. Conclusions We were able to record detailed information about the storage phases and a fully documented specimen life cycle. This will allow us to promote and tune up the best practices in biobanking because i) it will be possible to classify sample features with a sharper resolution, which allows future utilization of stored material; ii) cost-effective policies can be adopted in processing, storing and selecting specimens; iii) after using each aliquot, we can study the life cycle of the specimen with a possible feedback on the procedures.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4878
Author(s):  
Han He ◽  
Xiaochen Chen ◽  
Adnan Mehmood ◽  
Leevi Raivio ◽  
Heikki Huttunen ◽  
...  

This paper introduces a prototype of ClothFace technology, a battery-free textile-based handwriting recognition platform that includes an e-textile antenna and a 10 × 10 array of radio frequency identification (RFID) integrated circuits (ICs), each with a unique ID. Touching the textile platform surface creates an electrical connection from specific ICs to the antenna, which enables the connected ICs to be read with an external UHF (ultra-haigh frequency) RFID reader. In this paper, the platform is demonstrated to recognize handwritten numbers 0–9. The raw data collected by the platform are a sequence of IDs from the touched ICs. The system converts the data into bitmaps and their details are increased by interpolating between neighboring samples using the sequential information of IDs. These images of digits written on the platform can be classified, with enough accuracy for practical use, by deep learning. The recognition system was trained and tested with samples from six volunteers using the platform. The real-time number recognition ability of the ClothFace technology is demonstrated to work successfully with a very low error rate. The overall recognition accuracy of the platform is 94.6% and the accuracy for each digit is between 91.1% and 98.3%. As the solution is fully passive and gets all the needed energy from the external RFID reader, it enables a maintenance-free and cost-effective user interface that can be integrated into clothing and into textiles around us.


2007 ◽  
Vol 1 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Jochen Bretschneider ◽  
◽  
Thomas Menzel

Faster development of innovative machine tools, shorter processing times, improved surface quality of workpieces, higher machine productivity – these are just a few of the wishes and demands of machine manufacturers and end-users. Time-to-market is decisive; in some industries, six months too late on the market can already be decisive in losing the race for market leadership. The key to success lies in virtual techniques. These are an extremely cost-effective way to increase productivity in all phases of the machine tools life cycle. Siemens AG, the leading provider for control and drive technology, sees itself as a partner for the whole machine tool industry and offers four phases of simulation support which cover the entire life cycle of a machine: Mechatronic Support for simulation for machine development, Machine Simulator for supporting commissioning, Virtual Production for the optimization of production and, finally, Virtual NC Kernel (VNCK) for the testing of NC part programs at the end-user.


Author(s):  
Chandana Unnithan ◽  
Arthur Tatnall

Australian hospitals had begun exploring Radio Frequency Identification, a wireless automatic identification and data capture technology for improving the quality of their services towards the end of 2000s. After many an unsuccessful pilots, a breakthrough for large hospitals came in 2010, with a key learning rendered by a large regional hospital that not only experimented with the technology, but also have made it all pervasive in their operations. In this chapter, we present the case study, through an innovation translation perspective, focusing on the socio-technical factors captured through elements of Actor-Network Theory.


Author(s):  
Rafia Khan

It is the focus of the automobile industry to guarantee the quality of automobiles and meet the requirements of green development. Based on the principle of sustainable development, according to the characteristics of green supply chain and the concept of the whole life cycle of the automobile, the evaluation index system of the green supply chain of the automobile is constructed from five links of design, purchase, production, sale, and recycling. The “green” runs through the whole life cycle of automobile products and evaluates the green supply of automobile products scientifically and accurately. Reference should be provided for the situation.


2012 ◽  
Vol 39 (9) ◽  
pp. 1083-1088 ◽  
Author(s):  
Xuesong Shen ◽  
Ming Lu

The state-of-the-art tracking technologies, such as the global positioning system (GPS) and the radio frequency identification (RFID), lend themselves well to applications in relatively open areas, while falling short of accuracy and reliability in indoor or partially covered application settings due to signal blockage, distortion or deterioration. This research aims to address this challenge in construction engineering by exploring a cost-effective positioning methodology to realize automated and continuous tracking of construction resources. The emerging ZigBee-based wireless sensor networks (WSN) technology is introduced. A framework of WSN application is proposed for indoor construction resources tracking, which consists of a group of stationary and mobile sensor nodes that can communicate with one another. Real-time locations of the mobile nodes can be determined by applying the localization method based on received signal strength indicator (RSSI) and geometric trilateration.


2016 ◽  
Vol 4 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Riccardo Colella ◽  
Luca Catarinucci ◽  
Luciano Tarricone

Radio-frequency identification (RFID) technology is a consolidated example of wireless power transfer system in which passive electromagnetic labels called tags are able to harvest electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on different material or embedded into concrete structures have been carried out.


2017 ◽  
Vol 24 (s2) ◽  
pp. 164-171
Author(s):  
Da-yong Zhang ◽  
Song-song Yu ◽  
Qian-jin Yue

Abstract In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.


Author(s):  
Amber A. Smith-Ditizio ◽  
Alan D. Smith

One of the most compelling cases for RFID-embedded technologies in the healthcare field has been made by documenting increased efficiency in supply chain performance measurements, which generally consist of financial and non-financial indicators. The following chapter suggests that patient flows and safety are key measures of hospital operation efficiency. Process bottlenecks in hospitals can delay discharge times, and lead to higher costs and lower quality of service, which in turn affects the overall performance and business of the hospital. Hospitals have struggled to control costs, and RFID-embedded technologies should allow management to prioritize their technology spending and reduce total cost of suppliers and operational expenses.


Sign in / Sign up

Export Citation Format

Share Document