scholarly journals Development of a Drowsiness Detection System using a Histogram for Vehicle Safety

2015 ◽  
Vol 21 (2) ◽  
pp. 102-107 ◽  
Author(s):  
Su Min Kang ◽  
Kyung Moo Huh ◽  
Young-Bok Joo
Author(s):  
Chen Liu ◽  
Yude Dong ◽  
Yanli Wei ◽  
Jiangtao Wang ◽  
Hongling Li

The internal structure analysis of radial tires is of great significance to improve vehicle safety and during tire research. In order to perform the digital analysis and detection of the internal composition in radial tire cross-sections, a detection method based on digital image processing was proposed. The research was carried out as follows: (a) the distribution detection and parametric analysis of the bead wire, steel belt, and carcass in the tire section were performed by means of digital image processing, connected domain extraction, and Hough transform; (b) using the angle of location distribution and area relationship, the detection data were optimized through coordinate and quantity relationship constraints; (c) a detection system for tire cross-section components was designed using the MATLAB platform. Our experimental results showed that this method displayed a good detection performance, and important practical significance for the research and manufacture of tires.


2021 ◽  
pp. 153-166
Author(s):  
Pritesh Kumar Singh ◽  
Mayank Upadhyay ◽  
Archit Gupta ◽  
Puneet Singh Lamba

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 943 ◽  
Author(s):  
Sadegh Arefnezhad ◽  
Sajjad Samiee ◽  
Arno Eichberger ◽  
Ali Nahvi

This paper presents a novel feature selection method to design a non-invasive driver drowsiness detection system based on steering wheel data. The proposed feature selector can select the most related features to the drowsiness level to improve the classification accuracy. This method is based on the combination of the filter and wrapper feature selection algorithms using adaptive neuro-fuzzy inference system (ANFIS). In this method firstly, four different filter indexes are applied on extracted features from steering wheel data. After that, output values of each filter index are imported as inputs to a fuzzy inference system to determine the importance degree of each feature and select the most important features. Then, the selected features are imported to a support vector machine (SVM) for binary classification to classify the driving conditions in two classes of drowsy and awake. Finally, the classifier accuracy is exploited to adjust parameters of an adaptive fuzzy system using a particle swarm optimization (PSO) algorithm. The experimental data were collected from about 20.5 h of driving in the simulator. The results show that the drowsiness detection system is working with a high accuracy and also confirm that this method is more accurate than the recent available algorithms.


Sign in / Sign up

Export Citation Format

Share Document