ANALYSIS OF METHODS TO IMPROVE WEAR RESISTANCE OF BEDWAYS OF MACHINE TOOLS

Author(s):  
Anatoly Petrovich Minakov ◽  
Nadezhda Mikhailovna Yushkevich ◽  
Irina Dmitriyevna Kamchitskaya ◽  
Yelena Valeryevna Ilyushina ◽  
Denis Leonidovich Zaitsev
2000 ◽  
Vol 122 (11) ◽  
pp. 94-97 ◽  
Author(s):  
John DeGaspari

This article reviews the improvement of wear resistance of steel that can amount to found money, particularly in industrial uses such as stamping dies and machine tools. Quenching converts most of the austenitic microstructure to the martensitic phase, which is finer and denser. Martensite, the chief component of quenched steel, consists of hardened carbides that provide the higher hardness and wear resistance. Cryogenics has attracted the interest of others who want to improve wear resistance in wider applications. As a follow-on treatment to conventional heat treating, cryogenics should be seen as the very last step in the process. After wear tests, in which cryogenically treated parts were run against an abrasion wheel, it was found that weight loss on several steel grades improved by factors of two to five. It was also found that the overall hardness of the treated steel did not change noticeably.


Author(s):  
D.А. Minchenko ◽  
◽  
S.B. Yakimov ◽  
A.B. Noskov ◽  
D.A. Kosilov ◽  
...  

2008 ◽  
Vol 373-374 ◽  
pp. 304-307
Author(s):  
Sen Yang ◽  
Ming Run Wang ◽  
Tao Gong ◽  
Wen Jin Liu

In order to improve wear resistance of carbon steel, laser cladding experiments were carried out using a 3kW continuous wave CO2 laser. The diameter of the laser beam was 3-5mm, the scanning velocity was 3-10mm/s, and the laser output power was 1.0-1.3kW. The experimental results showed that MoSi2/SiCP composites coating could be in-situ synthesized from mixture powders of molybdenum, silicon and SiC by laser cladding. A good metallurgical bond between the coating and the substrate could be achieved. The microstructures of the coating were mainly composed of MoSi2, SiC and FeSiMo phases. The average microhardness of the coating was about HV0.21300, about 6.0 times larger than that of steel substrate.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350038 ◽  
Author(s):  
JIANQUAN LI ◽  
HUASHI LIU ◽  
JIANING LI ◽  
GUOZHONG LI

Zn was firstly used to improve wear resistance of a TA7 (Ti–5Al–2.5Sn) titanium alloy surface by mean of a laser alloying (LA) technique. The synthesis of the hard coating on a TA7 titanium alloy by LA of Co–Ti–Cr–TiB2–Zn–CeO2 pre-placed powders was investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experimental results indicated lot of the nanocrystals, such as Ti–B/CoZn13 and the amorphous phases were produced in such LA coating. The nucleation and growth of the amorphous phases were retarded by the nanocrystals in a certain extent during the crystallization process of the amorphous phases. Compared with a TA7 alloy substrate, an improvement of the wear resistance was obtained for such LA composite coating.


2018 ◽  
Vol 941 ◽  
pp. 568-573 ◽  
Author(s):  
Preston Wolfram ◽  
Christina Hensley ◽  
Ronald Youngblood ◽  
Rachael Stewart ◽  
Emmanuel de Moor ◽  
...  

Advanced High Strength Steel (AHSS) developments have largely focused on automotive applications using metallurgical approaches to develop retained austenite-containing microstructures in a variety of new steels, using the transformation-induced plasticity (TRIP) effect to achieve better combinations of strength and ductility. These efforts have been extended in recent studies to explore the potential to improve wear resistance, using metastable retained austenite to enhance wear resistance for earth-moving and other applications. This paper provides selected highlights of the authors’ efforts to develop wear resistant steels using AHSS processing approaches. Some attractive product/process development opportunities are identified, and it appears that martensite-austenite microstructures produced using “quenching and partitioning” exhibit increased wear resistance.


2018 ◽  
Vol 126 ◽  
pp. 376-385 ◽  
Author(s):  
G. Schuhler ◽  
A. Jourani ◽  
S. Bouvier ◽  
J.-M. Perrochat

2017 ◽  
Vol 91 ◽  
pp. 55-62 ◽  
Author(s):  
Yiqiang Wang ◽  
Botao Liu ◽  
Zhengcai Guo

Sign in / Sign up

Export Citation Format

Share Document