scholarly journals Electrical Impedance Tomography: the future of mechanical ventilation?

2021 ◽  
Vol 2 (2) ◽  
pp. 64-70
Author(s):  
Melina Simonpietri ◽  
Mia Shokry ◽  
ehab daoud

Electrical Impedance Tomography is a rapidly evolving technology used for bedside lung imaging. Although EIT devices have been commercially available for the past decade, they are still not commonly used in everyday clinical practice. EIT has multiple benefits over standard chest imaging techniques; it is non-invasive, it can be used at bedside and it allows continuous monitoring of the patient’s condition. EIT can change the standard practice for monitoring lung function and caring for patients on mechanical ventilation. In this concise review, we will discuss the general concepts of EIT and its clinical applications. As this technology keeps developing and becomes more available for clinical use, it might revolutionize the way we practice mechanical ventilation. Additional studies need to be performed to compare its benefits to our current practice. Keywords: EIT, Mechanical ventilation, PEEP, Overdistention

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Marc Bodenstein ◽  
Stefan Boehme ◽  
Stephan Bierschock ◽  
Andreas Vogt ◽  
Matthias David ◽  
...  

Author(s):  
Juliana Carneiro Gomes ◽  
Maíra Araújo de Santana ◽  
Clarisse Lins de Lima ◽  
Ricardo Emmanuel de Souza ◽  
Wellington Pinheiro dos Santos

Electrical Impedance Tomography (EIT) is an imaging technique based on the excitation of electrode pairs applied to the surface of the imaged region. The electrical potentials generated from alternating current excitation are measured and then applied to boundary-based reconstruction methods. When compared to other imaging techniques, EIT is considered a low-cost technique without ionizing radiation emission, safer for patients. However, the resolution is still low, depending on efficient reconstruction methods and low computational cost. EIT has the potential to be used as an alternative test for early detection of breast lesions in general. The most accurate reconstruction methods tend to be very costly as they use optimization methods as a support. Backprojection tends to be rapid but more inaccurate. In this work, the authors propose a hybrid method, based on extreme learning machines and backprojection for EIT reconstruction. The results were applied to numerical phantoms and were considered adequate, with potential to be improved using post processing techniques.


2020 ◽  
Vol 24 (4) ◽  
pp. 287-292
Author(s):  
Serena Tomasino ◽  
Rosa Sassanelli ◽  
Corrado Marescalco ◽  
Francesco Meroi ◽  
Luigi Vetrugno ◽  
...  

At the end of 2019, a novel coronavirus (COVID-19) was identified as the cause of a cluster of pneumonia cases, with high needs of mechanical ventilation in critically ill patients. It is still unclear whether different types of COVID-19 pneumonia require different ventilator strategies. With electrical impedance tomography (EIT) we evaluated, in real time and bedside, the distribution of ventilation in the different pulmonary regions before, during, and after pronation in COVID-19 respiratory failure. We present a brief literature review of EIT in non-COVID-19 patients and a report of 2 COVID-19 patients: one that did not respond well and another one that improved during and after pronation. EIT might be a useful tool to decide whether prone positioning should or should not be used in COVID-19 pneumonia.


10.29007/x6vj ◽  
2022 ◽  
Author(s):  
Minh Quan Cao Dinh ◽  
Quoc Tuan Nguyen Diep ◽  
Hoang Nhut Huynh ◽  
Ngoc An Dang Nguyen ◽  
Anh Tu Tran ◽  
...  

Electrical Impedance Tomography (EIT) is known as non-invasive method to detect and classify the abnormal breast tissues. Reimaging conductivity distribution within an area of the subject reveal abnormal tissues inside that area. In this work, we have created a very low-cost system with a simple 16-electrode phantom for doing research purposes. The EIT data were measured and reconstructed with EIDORS software.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michela Rauseo ◽  
Lucia Mirabella ◽  
Donato Laforgia ◽  
Angela Lamanna ◽  
Paolo Vetuschi ◽  
...  

Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy.Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure.Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded.Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F.Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure.


Sign in / Sign up

Export Citation Format

Share Document