scholarly journals A Pilot Study on Electrical Impedance Tomography During CPAP Trial in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia: The Bright Side of Non-invasive Ventilation

2021 ◽  
Vol 12 ◽  
Author(s):  
Michela Rauseo ◽  
Lucia Mirabella ◽  
Donato Laforgia ◽  
Angela Lamanna ◽  
Paolo Vetuschi ◽  
...  

Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy.Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure.Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded.Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F.Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure.

10.29007/x6vj ◽  
2022 ◽  
Author(s):  
Minh Quan Cao Dinh ◽  
Quoc Tuan Nguyen Diep ◽  
Hoang Nhut Huynh ◽  
Ngoc An Dang Nguyen ◽  
Anh Tu Tran ◽  
...  

Electrical Impedance Tomography (EIT) is known as non-invasive method to detect and classify the abnormal breast tissues. Reimaging conductivity distribution within an area of the subject reveal abnormal tissues inside that area. In this work, we have created a very low-cost system with a simple 16-electrode phantom for doing research purposes. The EIT data were measured and reconstructed with EIDORS software.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Proença ◽  
Fabian Braun ◽  
Mathieu Lemay ◽  
Josep Solà ◽  
Andy Adler ◽  
...  

AbstractPulmonary hypertension is a hemodynamic disorder defined by an abnormal elevation of pulmonary artery pressure (PAP). Current options for measuring PAP are limited in clinical practice. The aim of this study was to evaluate if electrical impedance tomography (EIT), a radiation-free and non-invasive monitoring technique, can be used for the continuous, unsupervised and safe monitoring of PAP. In 30 healthy volunteers we induced gradual increases in systolic PAP (SPAP) by exposure to normobaric hypoxemia. At various stages of the protocol, the SPAP of the subjects was estimated by transthoracic echocardiography. In parallel, in the pulmonary vasculature, pulse wave velocity was estimated by EIT and calibrated to pressure units. Within-cohort agreement between both methods on SPAP estimation was assessed through Bland–Altman analysis and at subject level, with Pearson’s correlation coefficient. There was good agreement between the two methods (inter-method difference not significant (P > 0.05), bias ± standard deviation of − 0.1 ± 4.5 mmHg) independently of the degree of PAP, from baseline oxygen saturation levels to profound hypoxemia. At subject level, the median per-subject agreement was 0.7 ± 3.8 mmHg and Pearson’s correlation coefficient 0.87 (P < 0.05). Our results demonstrate the feasibility of accurately assessing changes in SPAP by EIT in healthy volunteers. If confirmed in a patient population, the non-invasive and unsupervised day-to-day monitoring of SPAP could facilitate the clinical management of patients with pulmonary hypertension.


Author(s):  
Ramesh Kumar ◽  
Rajesh Mahadeva

A newly proven technique is non-invasive bio-impedance, and also known as Electrical Impedance Tomography (EIT), which is used for medical or non-medical applications. EIT images are based on the internal distributions of the conductivity or resistivity from the boundary data, which depend on the voltage measurement of the stomach attached electrodes of the human body. An experimental study of the EIT system presented here has been used 8/16 surface electrodes configurations for the human body’s stomach. Then, according to the data acquisition methods of the EIT, the surface potentials of the stomach through the current injection were measured. For current pulses, a voltage-controlled current source has been created, and the created current source is a combination of voltage to current converter and current signal generator. Current positions and measuring voltages have been calculated using the designed control unit. However, the imaging algorithm requires sufficient data through the experimental work, which defines the cross-sectional image of resistivity. The cross-sectional image has been based on the Finite Element Method (FEM). It produces 2D/3D images, impedance distribution graphs and Mesh models. The proposed EIT system has been used for non-medical and industrial applications, which have non-invasive, inexpensive, radiation-free and a high potential for imaging modality.


Thorax ◽  
2010 ◽  
Vol 65 (Suppl 4) ◽  
pp. A130-A131
Author(s):  
P. A. Shah ◽  
H. Shannon ◽  
A.-F. Hoo ◽  
D. Ahmed ◽  
J. Chudleigh ◽  
...  

2004 ◽  
Vol 359 (1447) ◽  
pp. 1115-1116 ◽  
Author(s):  
Nanshan Zhong

The case fatality was the lowest (3.8%) among 1512 cases with severe acute respiratory syndrome (SARS) in Guangdong Province, China. Rational use of corticosteroid, non–invasive ventilation and the integration of traditional Chinese medicine and modern medicine may partly have contributed to the lowest fatality figure. There was a close linkage between civet cats and humans in terms of transmission of SARS. Strict control of the wild–animal market may be significant in preventing a new outbreak of SARS this year.


2021 ◽  
Vol 2 (2) ◽  
pp. 64-70
Author(s):  
Melina Simonpietri ◽  
Mia Shokry ◽  
ehab daoud

Electrical Impedance Tomography is a rapidly evolving technology used for bedside lung imaging. Although EIT devices have been commercially available for the past decade, they are still not commonly used in everyday clinical practice. EIT has multiple benefits over standard chest imaging techniques; it is non-invasive, it can be used at bedside and it allows continuous monitoring of the patient’s condition. EIT can change the standard practice for monitoring lung function and caring for patients on mechanical ventilation. In this concise review, we will discuss the general concepts of EIT and its clinical applications. As this technology keeps developing and becomes more available for clinical use, it might revolutionize the way we practice mechanical ventilation. Additional studies need to be performed to compare its benefits to our current practice. Keywords: EIT, Mechanical ventilation, PEEP, Overdistention


Sign in / Sign up

Export Citation Format

Share Document