Evaluation of Intercropping Sorghum × Sudangrass Hybrid (Sorghum bicolor) with Legume Crops Based on Growth Characteristics, Forage Productivity, and Feed Values at a Summer Paddy Field

2021 ◽  
Vol 41 (3) ◽  
pp. 198-204
Author(s):  
Yowook Song ◽  
Sang-Hoon Lee ◽  
Md Atikur Rahman ◽  
Ki-Won Lee
Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 93-97 ◽  
Author(s):  
F. W. Roeth ◽  
T. L. Lavy

The uptake of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) was studied in sudangrass [Sorghum sudanense(Piper) Stapf, var. Piper], grain sorghum [Sorghum bicolor(L.) Moench], and corn (Zea maysL.) to find whether differences in atrazine uptake exist among these species. The uptake of atrazine followed closely the growth patterns of corn, sorghum, and sudangrass during the first 5 weeks of growth. Concentration of14C from ring-labeled14C-atrazine in the soil reached a peak in corn, sorghum, and sudangrass plants after 2 weeks of growth and then declined. The14C concentrations were two to three times greater in sorghum and sudangrass than in corn throughout the 5-week period. Atrazine uptake per gram of plant growth by these crops was directly proportional to the concentration of atrazine in the soil and the proportionality factors were in the order: sudangrass < sorghum ≫ corn. Total uptake and the total growth were in order: corn ≫ sorghum = sudangrass. In a study where relative humidity was a variable, the amount of atrazine absorbed per ml of water was inversely related to total water usage.


1996 ◽  
Vol 76 (1) ◽  
pp. 123-125 ◽  
Author(s):  
W. P. McCaughey ◽  
M. C. Therrien ◽  
R. Mabon

After a series of hot, dry years in the late 1980s a study was conducted to assess the suitability and yield stability of forage sorghum (Sorghum bicolor L. Moench.) in southern Manitoba. The effects of genotype and environment on DM yield of seven forage sorghum genotypes were evaluated (1990–1992) in six different environments. Genotype, environment and genotype × environment accounted for 3.9% (P < 0.0001), 84.8% (P < 0.0001) and 3.3% (P < 0.001) of the total variation in DM yield, respectively. The fact that environment accounted for most of the variability in DM yield and that relative rankings of varieties differed across environments indicated that yield was unstable. Forage sorghum produced acceptable DM yield only in years which were warmer (> 2700 CHU) than average (2200–2600 CHU) for southern Manitoba. Forage sorghum is not recommended for southern Manitoba unless the climate warms to where 2700 CHU are consistently accumulated during the growing season. Key words: Forage, sorghum, sorghum-sudangrass, C4, temperature, yield


EDIS ◽  
1969 ◽  
Vol 2004 (18) ◽  
Author(s):  
K. Dover ◽  
Koon-Hui Wang ◽  
Robert McSorley

Sorghum (Sorghum bicolor (L.) Moench) and sorghum-sudangrass (S. bicolor x S. sudanense (Piper) Stapf) are often used in crop rotation systems in Florida. Not only do they produce a source of forage or silage for animal feed, but many cultivars are effective in reducing population levels of root-knot nematodes, which are key nematode pests in Florida as well as many other parts of the world. Sorghum-sudangrass (S. bicolor x S. sudanense), also known as sorghum x sudangrass, sudax, or sudex, is a hybrid between sorghum (S. bicolor) and sudangrass (S. sudanense). Specific cultivars of either sorghum, sudangrass, or sudex provide a potential for nematode management, with the hybrid having more advantages over either one of its parents. This document is ENY-716, one of a series of the Department of Entomology and Nematology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Date first printed: September 2004.  ENY716/IN531: Nematode Management Using Sorghum and Its Relatives (ufl.edu)


Sign in / Sign up

Export Citation Format

Share Document