scholarly journals In Vitro Evaluation of the Effects of Bleaching Materials on Surface Roughness and Surface Hardness of Various Restorative Materials

2021 ◽  
Vol 27 (3) ◽  
pp. 439-450
Author(s):  
Funda SERİNSÖZ ◽  
Ertan ERTAŞ ◽  
Eda GÜLER
2014 ◽  
Vol 15 (2) ◽  
pp. 190-194 ◽  
Author(s):  
Samir Mansuri ◽  
Abdul Mujeeb ◽  
Seema Abid Hussain ◽  
Kausar Ramaswamy

ABSTRACT Aim The aim of the study was to correlate the pH and fluoride ion uptake with surface hardness of composite resin based restorative materials after topical fluoride application. Methodology Forty disks of each of test materials Composite (Filtek Z350XT, 3M ESPE, St Paul, MN, USA), Resin modified glass ionomer (Vitremer) and Compomer (Dyract AP) were made and ten disks of each material were placed in different test solutions – 1.23% APF gel, Sodium fluoride mouth rinse, 0.9% neutral fluoride and distilled water (Control group). After 36 hours of immersion, specimens were subjected to microhardness testing machine for evaluation of surface hardness. Results The greater hardness deterioration for all materials resulted with 1.23% APF gel when compared to the control group. Composite (Filtek Z350XT, 3M ESPE, St Paul, MN, USA) showed 17.13 VHN (control group 59.11 VHN). Vitremer showed 9.71 VHN (control group 37.71 VHN). Compomer showed 19.22 VHN (control group 36.78 VHN). Conclusion 1.23% ApF gel significantly decreased hardness of composite, Vitremer and Compomer. Hardness deterioration associated with sodium fluoride mouth rinse and 0.9% neutral fluoride was less compared to 1.23% ApF gel. How to cite this article Mujeeb A, Mansuri S. Hussain SA, Ramaswamy K. In vitro Evaluation of Topical Fluoride pH and their Effect on Surface Hardness of Composite Resin-based Restorative Materials. J Contemp Dent Pract 2014;15(2): 190-194.


2011 ◽  
Vol 36 (4) ◽  
pp. 397-402 ◽  
Author(s):  
ALF Briso ◽  
LP Caruzo ◽  
APA Guedes ◽  
A Catelan ◽  
PH dos Santos

Clinical Relevance The effects of dental erosion caused by acidic solutions on the surface of restorative dental materials could be minimized by the application of a surface sealant.


2014 ◽  
Vol 60 (5) ◽  
pp. 200-203
Author(s):  
Andreea Borş ◽  
Cristina Molnar-Varlam ◽  
Melinda Székely

Abstract Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil), two compomers (Dyract Extra and Twinky Star) and two glass ionomers (Ketac Molar and Fuji II LC). Twenty disks (10mm×2mm) of each material were prepared (n=120) and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola) 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm) and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR). For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm) after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar), 0.28±0.04 (Fuji II LC), 0.27±0.00 (Filtek Z550), 0.23±0.01 (X-tra fil), 0.20±0.00 (Twinky Star) and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05). Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.


2021 ◽  
Vol 46 (1) ◽  
pp. E11-E20
Author(s):  
IF Leão ◽  
N Araújo ◽  
CK Scotti ◽  
RFL Mondelli ◽  
MM de Amoêdo Campos Velo ◽  
...  

Clinical Relevance A prereacted, glass-ionomer filler fluoride-containing resin composite had lower remineralization potential than glass-ionomer cements but was able to inhibit enamel demineralization; thus, it may be an option for restoring dental surfaces for patients at high risk of caries. SUMMARY Evidence is lacking on the use of surface prereacted glass-ionomer filler resin composites to inhibit demineralization and that simulate real clinical conditions. The present laboratory study evaluated the potential of such composites to prevent demineralization and quantified fluoride (F) and other ions released from restorative materials after a dynamic pH-cycling regimen applied to the tooth material interface in vitro. The pH-cycling regimen was assessed by measuring surface hardness (SH) along with energy dispersive X-ray spectroscopy (EDX). Methods and Materials: Ninety blocks of bovine enamel were subjected to composition analysis with EDX, and were further categorized based on SH. The blocks were randomly divided into 6 treatment groups (n=15 each): F IX (Fuji IX Extra; GC Corporation); IZ (Ion Z, FGM); F II (Fuji II LC, GC Corporation); B II (Beautifil II, Shofu); F250 (Filtek Z250 XT, 3M ESPE); and NT (control, no treatment). The blocks were subjected to a dynamic pH-cycling regimen at 37°C for 7 days concurrently with daily alternations of immersion in demineralizing/remineralizing solutions. EDX was conducted and a final SH was determined at standard distances from the restorative materials (150, 300, and 400 μm). Results: The EDX findings revealed a significant increase in F concentration and a decrease in Ca2+ in the enamel blocks of group B II after the pH-cycling regimen (p&lt;0.05). SH values for groups F IX, IZ, and F II were greater than those for groups B II, F250, and NT at all distances from the materials. Conclusions: The results suggest that each of 3 restorative materials, F IX, IZ, and F II, partially inhibited enamel demineralization under a dynamic pH-cycling regimen.


2020 ◽  
Vol 14 (01) ◽  
pp. 161-170
Author(s):  
Pedro Luiz Santos Tomaz ◽  
Letícia Almeida de Sousa ◽  
Kayanne Freire de Aguiar ◽  
Thales de Sá Oliveira ◽  
Marcelo Henrick Maia Matochek ◽  
...  

Abstract Objectives This in vitro study investigated the remineralization potential of 1450 ppm, fluoride-containing toothpastes containing different active remineralization agents after cariogenic challenge with pH cycling. The enamel surface roughness after brushing and the chemical and physical characteristics of the toothpastes tested were also analyzed. Materials and Methods Fifty-six bovine enamel blocks were obtained (4 × 4 × 6 mm) and divided into three thirds: intact (untreated), demineralized (artificial caries lesion), and treated (caries lesion, pH cycling, and brushing with dentifrices). Seven commercially available fluoride toothpastes (1450 ppm F): three with anti-erosion claims (Candida Professional [CPP], Colgate Total 12 Daily Repair [CDR], Regenerate Enamel Science [RES]); three with desensitizing claims (Bianco Pro Clinical [BPP], Elmex Sensitive [ESS], and Regenerador Diário DentalClean [RDC]); and one standard regular-fluoride toothpaste Colgate Total 12 (CTT) were selected. During pH cycling (demineralization 6 h/remineralization 18 h) for 7 days, the treated third was brushed with the different dentifrices for 10 minutes in a brushing machine before immersion in a remineralizing solution. The Knoop hardness (25 g, 10 second of the surface, and longitudinal section were then evaluated at eight depths (10 to 330 μm). Mean and percentage of surface hardness recovery (% SHR) were calculated. Surface enamel roughness (Ra) was also evaluated. The pH, %weight of particles, zeta potential, and polydispersity index of toothpaste slurries were also evaluated. Statistical Analysis Data were statistically analyzed (ANOVA/Tukey, 5%). Results The %SHR of CPP was significantly lower than the others (p < 0.05). The enamel subsurface was more effectively remineralized when treated with BPP, ESS, and RDC. The surface roughness was higher when the demineralized third was treated with CTT, RDC, and RES and after the cariogenic challenge (p < 0.05). For some of the products tested, there was no relationship between surface remineralization and subsurface remineralization. Although toothpastes CPP and RDC present the lowest %SHR means, both products effectively remineralize within the subsurface carious lesion. Regression analysis demonstrated no strong correlations of the enamel surface roughness with the chemical and physical parameters. Conclusions Most but not all the fluoride toothpastes were able to remineralize the enamel surface. No specific chemical or physical parameter alone correlated with the surface roughness.


2014 ◽  
Vol 1058 ◽  
pp. 323-328
Author(s):  
Xin Yi Zhao ◽  
Shao Jie Hou ◽  
Shi Bao Li

Purpose To investigate the cariostatic effect of six restorative materials in vitro. Method Enamel blocks of bovine incisors were restored with six restorative materials (a conventional GIC, FujiIILC, Compoglass F, BeautifilII,Charisma and an experimental fluoride releasing resin composite) respectively with a gap of 270μm in width between each filling material and enamel. Then all restorations were immersed in a partially saturated acidic buffer solution at 37C for 3days. The surface enamel microhardness of the enamel blocks were measured before and after demineralization and the depth of enamel demineralization was measured using polarization microscope for each restoration.Results Enamel surface hardness of all restorations demonstrated significant reduced after demineralization ( p<0.05), and the order of hardness reduction is as follows: Charisma >BeautifilII≈Compoglass F≈Experimental Resin>FujiIILC>GIC ( p> 0.05). The order of the depth of enamel demineralization along the surface and the interface near the gap for the 5 materials is as follows: Charisma >BeautifilII≈Compoglass F ≈Experimental Resin>FujiIILC>GIC (P > 0.05). Conclusion The new fluoride releasing and recharging composite resin has the ability to prevent recurrent caries around the restoration and its ability is comparable to compomer materials.


Sign in / Sign up

Export Citation Format

Share Document