The Potential of a Bioactive, Pre-reacted, Glass-Ionomer Filler Resin Composite to Inhibit the Demineralization of Enamel in Vitro

2021 ◽  
Vol 46 (1) ◽  
pp. E11-E20
Author(s):  
IF Leão ◽  
N Araújo ◽  
CK Scotti ◽  
RFL Mondelli ◽  
MM de Amoêdo Campos Velo ◽  
...  

Clinical Relevance A prereacted, glass-ionomer filler fluoride-containing resin composite had lower remineralization potential than glass-ionomer cements but was able to inhibit enamel demineralization; thus, it may be an option for restoring dental surfaces for patients at high risk of caries. SUMMARY Evidence is lacking on the use of surface prereacted glass-ionomer filler resin composites to inhibit demineralization and that simulate real clinical conditions. The present laboratory study evaluated the potential of such composites to prevent demineralization and quantified fluoride (F) and other ions released from restorative materials after a dynamic pH-cycling regimen applied to the tooth material interface in vitro. The pH-cycling regimen was assessed by measuring surface hardness (SH) along with energy dispersive X-ray spectroscopy (EDX). Methods and Materials: Ninety blocks of bovine enamel were subjected to composition analysis with EDX, and were further categorized based on SH. The blocks were randomly divided into 6 treatment groups (n=15 each): F IX (Fuji IX Extra; GC Corporation); IZ (Ion Z, FGM); F II (Fuji II LC, GC Corporation); B II (Beautifil II, Shofu); F250 (Filtek Z250 XT, 3M ESPE); and NT (control, no treatment). The blocks were subjected to a dynamic pH-cycling regimen at 37°C for 7 days concurrently with daily alternations of immersion in demineralizing/remineralizing solutions. EDX was conducted and a final SH was determined at standard distances from the restorative materials (150, 300, and 400 μm). Results: The EDX findings revealed a significant increase in F concentration and a decrease in Ca2+ in the enamel blocks of group B II after the pH-cycling regimen (p<0.05). SH values for groups F IX, IZ, and F II were greater than those for groups B II, F250, and NT at all distances from the materials. Conclusions: The results suggest that each of 3 restorative materials, F IX, IZ, and F II, partially inhibited enamel demineralization under a dynamic pH-cycling regimen.

2014 ◽  
Vol 1058 ◽  
pp. 323-328
Author(s):  
Xin Yi Zhao ◽  
Shao Jie Hou ◽  
Shi Bao Li

Purpose To investigate the cariostatic effect of six restorative materials in vitro. Method Enamel blocks of bovine incisors were restored with six restorative materials (a conventional GIC, FujiIILC, Compoglass F, BeautifilII,Charisma and an experimental fluoride releasing resin composite) respectively with a gap of 270μm in width between each filling material and enamel. Then all restorations were immersed in a partially saturated acidic buffer solution at 37C for 3days. The surface enamel microhardness of the enamel blocks were measured before and after demineralization and the depth of enamel demineralization was measured using polarization microscope for each restoration.Results Enamel surface hardness of all restorations demonstrated significant reduced after demineralization ( p<0.05), and the order of hardness reduction is as follows: Charisma >BeautifilII≈Compoglass F≈Experimental Resin>FujiIILC>GIC ( p> 0.05). The order of the depth of enamel demineralization along the surface and the interface near the gap for the 5 materials is as follows: Charisma >BeautifilII≈Compoglass F ≈Experimental Resin>FujiIILC>GIC (P > 0.05). Conclusion The new fluoride releasing and recharging composite resin has the ability to prevent recurrent caries around the restoration and its ability is comparable to compomer materials.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Atsushi Kameyama ◽  
Aoi Saito ◽  
Akiko Haruyama ◽  
Tomoaki Komada ◽  
Setsuko Sugiyama ◽  
...  

This study aimed to examine the marginal seal between various commercial temporary restorative materials and exposed dentin/built-up composite. Sixty bovine incisors were cut above the cemento-enamel junction, and half of the dentin was removed to form a step, which was built up using flowable resin composite. The root canals were irrigated, filled with calcium hydroxide, and sealed using one of six temporary sealing materials (hydraulic temporary restorative material, temporary stopping material, zinc oxide eugenol cement, glass-ionomer cement, auto-cured resin-based temporary restorative material, and light-cured resin-based temporary restorative material) (n = 10 for each material). The samples were thermocycled 500 times and immersed in an aqueous solution of methylene blue. After 2 days, they were cut along the long axis of the tooth and the depth of dye penetration was measured at the dentin side and the built-up composite side. For the margins of the pre-endodontic resin composite build-up, the two resin-based temporary restorative materials showed excellent sealing. Hydraulic temporary restorative material had a moderate sealing effect, but the sealing effect of both zinc oxide eugenol cement and glass-ionomer cement was poorer.


Author(s):  
AlSarheed M ◽  
Salama F

Background: The purpose of this in vitro study was to evaluate the effect of finishing/polishing procedures on color stability of three restorative materials: Nano-hybrid resin composite (NRC), silver glass ionomer cement (SGI), and resin-modified glass ionomer cement (RMGI) exposed to different staining of energy drinks: Barbican, Bison, and Red bull.


2002 ◽  
Vol 18 (8) ◽  
pp. 561-569 ◽  
Author(s):  
Lisa Papagiannoulis ◽  
Afrodite Kakaboura ◽  
George Eliades

2017 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Shirin Malek ◽  
Mozammal Hossain ◽  
Md. Abdul Gafur ◽  
Md. Shahjalal Rana ◽  
Md. Ali Asgor Moral

<p>The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, <em>in vitro</em>. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.</p>


2017 ◽  
Vol 9 (2) ◽  
pp. 4-10
Author(s):  
Krishna Prasada L ◽  
Jyothsna S Jathanna ◽  
Naveen Kumar ◽  
Ramya M.K ◽  
Elizabeth Issac

BACKGROUND: To determine the effectiveness of three polishing systems on three different composite materials by evaluating surface roughness using a Profilometer and Scanning electron microscope. METHODOLOGY: A total of Sixty-three resin composite disks were prepared in rectangular acrylic mould of 8×2mm dimension, with 4mm thickness. Specimens were made of light activated resin composite Filtek Z-250-XT, Tetric-N-Ceram bulkfill, Ceram X Duo. The sixty-three samples were divided into three groups of twenty-one samples each i.e. Group A (Filtek Z-250-XT), Group B (TetricN-Ceram bulkfill) and Group C (Ceram-X-Duo).Out of 21 samples of each of the material, 7 specimens were polished with multi enhance polishing agents, 7 specimens were polished with super snap polishing agents and 7 specimens were polished with sof-lexdiscs.Surface roughness of each sample after polishingwasevaluatedusingProfilometer and Scanning electron microscope. RESULTS: One-way anova and kruskalwallis test was used for statistical analysis. Ceram-X-Duo gave least roughness average value with Super snap polishing system when compared to multi enhance and sof-lex polishing system. CONCLUSION: Super snap polishing system is a better polishing system than multi enhance and soflex and Ceram-X-Duo composite material offers better polishability compared to Filtek Z-250-XT and Tetric-N-Ceram bulk fill.


2014 ◽  
Vol 42 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Gen Mayanagi ◽  
Koei Igarashi ◽  
Jumpei Washio ◽  
Hitomi Domon-Tawaraya ◽  
Nobuhiro Takahashi

2013 ◽  
Vol 37 (4) ◽  
pp. 403-406 ◽  
Author(s):  
S Tamilselvam ◽  
MJ Divyanand ◽  
P Neelakantan

Objective: This aim of this study was at compare the fibroblast cytotoxicicty of four restorative materials - a conventional glass ionomer cement (GC Fuji Type II GIC), a ceramic reinforced glass ionomer cement (Amalgomer), a giomer (Beautifil II) and a resin composite (Filtek Z350) at three different time periods (24, 48 and 72 hours). Method: The succinyl dehydrogenase (MTT) assay was employed. Cylindrical specimens of each material (n=15) were prepared and stored in Dulbecco's modified Eagle medium, following which L929 fibroblasts were cultured in 96 well plates. After 24 hours of incubation, the MTT assay was performed to detect the cell viability. The method was repeated after 48 and 72 hours. The impact of materials and exposure times on cytotoxicity of fibroblasts was statistically analyzed using two way ANOVA (P=0.05). Results: Both time and material had an impact on cell viability, with giomer demonstrating the maximum cell viability at all time periods. The cell viability in the giomer group was significantly different from all other materials at 24 and 72 hours (P&lt;0.05), while at 48 hours giomer was significantly different only with resin composite (P&lt;0.05). Conclusions: Giomers showed better biocompatibility than conventional and ceramic reinforced glass ionomer cements and, resin composite. Ceramic reinforced glass ionomer demonstrated superior biocompatibility compared to conventional glass ionomer.


2020 ◽  
Vol 14 (01) ◽  
pp. 161-170
Author(s):  
Pedro Luiz Santos Tomaz ◽  
Letícia Almeida de Sousa ◽  
Kayanne Freire de Aguiar ◽  
Thales de Sá Oliveira ◽  
Marcelo Henrick Maia Matochek ◽  
...  

Abstract Objectives This in vitro study investigated the remineralization potential of 1450 ppm, fluoride-containing toothpastes containing different active remineralization agents after cariogenic challenge with pH cycling. The enamel surface roughness after brushing and the chemical and physical characteristics of the toothpastes tested were also analyzed. Materials and Methods Fifty-six bovine enamel blocks were obtained (4 × 4 × 6 mm) and divided into three thirds: intact (untreated), demineralized (artificial caries lesion), and treated (caries lesion, pH cycling, and brushing with dentifrices). Seven commercially available fluoride toothpastes (1450 ppm F): three with anti-erosion claims (Candida Professional [CPP], Colgate Total 12 Daily Repair [CDR], Regenerate Enamel Science [RES]); three with desensitizing claims (Bianco Pro Clinical [BPP], Elmex Sensitive [ESS], and Regenerador Diário DentalClean [RDC]); and one standard regular-fluoride toothpaste Colgate Total 12 (CTT) were selected. During pH cycling (demineralization 6 h/remineralization 18 h) for 7 days, the treated third was brushed with the different dentifrices for 10 minutes in a brushing machine before immersion in a remineralizing solution. The Knoop hardness (25 g, 10 second of the surface, and longitudinal section were then evaluated at eight depths (10 to 330 μm). Mean and percentage of surface hardness recovery (% SHR) were calculated. Surface enamel roughness (Ra) was also evaluated. The pH, %weight of particles, zeta potential, and polydispersity index of toothpaste slurries were also evaluated. Statistical Analysis Data were statistically analyzed (ANOVA/Tukey, 5%). Results The %SHR of CPP was significantly lower than the others (p < 0.05). The enamel subsurface was more effectively remineralized when treated with BPP, ESS, and RDC. The surface roughness was higher when the demineralized third was treated with CTT, RDC, and RES and after the cariogenic challenge (p < 0.05). For some of the products tested, there was no relationship between surface remineralization and subsurface remineralization. Although toothpastes CPP and RDC present the lowest %SHR means, both products effectively remineralize within the subsurface carious lesion. Regression analysis demonstrated no strong correlations of the enamel surface roughness with the chemical and physical parameters. Conclusions Most but not all the fluoride toothpastes were able to remineralize the enamel surface. No specific chemical or physical parameter alone correlated with the surface roughness.


2009 ◽  
Vol 03 (02) ◽  
pp. 127-134 ◽  
Author(s):  
Tancan Uysal ◽  
Mihri Amasyali ◽  
Alp Erdin Koyuturk ◽  
Deniz Sagdic

ABSTRACTObjectives: The aim of this in vitro study was to compare the efficacy of Amorphous Calcium Phosphate (ACP)-containing orthodontic composite and resin-modified glass ionomer cement (RMGIC) on enamel demineralization adjacent to orthodontic brackets evaluated by a new laser fluorescence device.Methods: Sixty extracted maxillary premolars were used in the present study. Twenty orthodontic brackets were bonded with ACP-containing orthodontic adhesive (Aegis-Ortho), 20 were bonded with RMGIC (Fuji Ortho LC) ad20 were bonded with Transbond XT composite as the control. All samples were then cycled for 21 days through a daily procedure of demineralization for 6 hours and remineralization for 17 hours. After this procedure, demineralization evaluations were undertaken by a pen-type laser fluorescence device (DIAGNO-dent Pen). Analysis ofvariance (ANOVA) and Tukey test was used for statistical evaluation, at P<.05 level.Results: According to ANOVA, significant demineralization variations (ΔD) were determined among groups (F=6.650; P<.01). The ACP-containing composite showed the lowest (mean: 8.98±2.38) and the control composite showed the highest (mean:12.15±3.83) ΔD, during 21 days demineralization process (P<.01). Significant difference was also observed between the ΔD scores of the RMGIC (mean: 9.24±2.73) and control (P<.05).No significant differences was found in preventive effects of ACP-containing composite and RMGIC (P<.05) against demineralization.Conclusions: The use of both ACP-containing orthodontic composite and RMGIC should be recommended for any at-risk orthodontic patient to provide preventive actions and potentially remineralize subclinical enamel demineralization. (Eur J Dent 2009;3:127-134)


Sign in / Sign up

Export Citation Format

Share Document