scholarly journals Effectiveness of Direct Application of Phosphate Rock in Upland Acid Inceptisols Soils on Available-P and Maize Yield

2013 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
. Nurjaya ◽  
Dedi Nursyamsi

Source of P fertilizer which is used by farmers in upland acid soils area is generally acidulated phosphate rock (PR), such as tripel super phosphate (TSP), super phosphate 36% P2O5 (SP-36), as well as partial acidulated phosphate rock (PAPR) which contain 10-30% P2O5. Their effectiveness, however, varies and depends on the soil and plant types. Phosphate rock fertilizers have a high prospects for acid soils because its effectiveness equals to the SP-36, cheaper, slow release, and its application can also leave  the residual P in the soil that available for plants for next few seasons. Field experiment aimed to study the effectiveness of direct application of PR at upland acid soils and its effect on soil available-P as well as maize (Zea mays L.) yield was conducted in Acid Inceptisols of Ciampea, Bogor in wet season years 2008/2009. The experiment was arranged by a Randomized Completely Block Design with 3 replications. Maize of P-12 variety was used as a plant indicator. The treatment consisted of 6 levels of phosphate rock: 0, 20, 30, 40, 50, and 60 kg P ha-1, as well as one level of SP-36 40 kg P ha-1 as standard fertilizer. In addition, urea of 300 kg ha-1 and KCl of 100 kg ha-1 were used as basal fertilization. The result showed that the application of PR in the amount ranging from 20 to 60 kg P ha-1 increased total-P and available-P, and pH, decreased exchangeable Al in the soils as well as increased maize straw and grain. Phosphate rock  application at 40 kg P ha-1 level was equally effective as SP-36 in the tested soils. Critical level of soil P for maize grown in the soil was 675 and 5.00 mg P2O5 kg-1 extracted with HCl 25% and Bray I, respectively. The requirement of P for maize grown in the soil to achieve maximum profit was 38 kg P ha-1 and 17.5 kg P  ha-1 or equivalent to PR of 583 and 268 kg ha-1 in low (soil P < critical level) and high (soil P > critical level) soil P status,  respectively.Keywords: Direct application, phosphate rock, soil available-P, upland acid soils.[How to Cite: Nurjaya and D Nursyamsi. 2013. Effectiveness of Direct Application of Phosphate Rock in Upland Acid Inceptisols Soils on Available-P and Maize Yield. J Trop Soils 18 (1): 1-9. doi: 10.5400/jts.2013.18.1.1] [Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.1]  

2021 ◽  
Vol 648 (1) ◽  
pp. 012175
Author(s):  
A F Siregar ◽  
Husnain ◽  
I W Suastika ◽  
N P S Ratmini ◽  
I A Sipahutar ◽  
...  

1989 ◽  
Vol 69 (2) ◽  
pp. 191-197
Author(s):  
W. VAN LIEROP

The objective of this study was to determine the effect of adding either 0.001M EDTA or 0.005M DTPA on the amount of P removed from acid and calcareous soils by the Kelowna and 0.25M HO Ac extractants. These complexing agents were studied for possible simultaneous extraction and determination of available Zn. To achieve that end, P-concentrations removed by these solutions from a group of acid, calcareous, and combined soils were compared against reference values obtained with 0.5M NaHCO3 (Olsen et al.) and the Kelowna extractant (0.25M HOAc + 0.015M NH4F) by means of graphing, correlation and regression techniques. Of the 80 soils studied, 40 were acid with pH (H2O) values ranging from 4.2 to 6.9 and the remainder having higher values up to 9.3. Results indicated that additions of either 0.001M EDTA or 0.005M DTPA to the Kelowna solution increased average extracted P concentrations by about 20 and 60%, respectively. Values removed by either of the new KEDTA and KDTPA solutions were closely related to those extracted with 0.5M NaHCO3 and Kelowna solutions on acid and calcareous soils (r values ≥ 0.96**). As EDTA and DTPA increased extracted soil P, these were added at 0.001 and 0.005M as NH4 preparations to 0.25M HOAc (AADTPA & AAEDTA; without fluoride), respectively, for determining whether these complexing agents could supplant F for P extraction. These solutions removed proportionally related amounts (r ≈ 0.94**) of P from calcareous, compared to the Kelowna and 0.5M NaHCO3 solutions, but relationships were less precise for acid soils (r ≈ 0.76**). These results suggest that the AADTPA or AAEDTA solution should be evaluated further before adoption for routine P determination in multiple element extractions. Key words: Mehlich in, acid soils, calcareous soils


Author(s):  
Khadraji Ahmed ◽  
Bouhadi Mohamed ◽  
Ghoulam Cherk

Background: Growing chickpea (Cicer arietinum) plants is affected by several environmental constraints as osmotic stress and nutrients deficiency particularly phosphorus (P). For other legume species, it was confirmed that P deficiency affects negatively their rhizobial symbiosis. The purpose of this study was to assess the effect of soil available P level on chickpea-rhizobia symbiosis under field conditions at Oualidia region of Morocco. Methods: Ten farmers’ fields with different soil available P levels were considered to carry out this study based on samples of 10 plants per plot. Result: The results showed that the plants from soil 7, with the lowest pH and the highest available P level (23.52ppm), presented high shoot dry weight (38.3 g/plant). Meanwhile the soil 5 with the lowest available P content showed low plant growth. The shoot P content was positively linked to soil P level but nodule biomass showed an irregular variation with soil available P level. Furthermore, it was confirmed that adequate plant P nutrition results in high chickpea yield and it was the case for plants from soil 7 presenting a mean yield of 62 seeds per plant). Finally, strong correlation was noted between yield and phosphorus concentration in soil (r=0.94).


2013 ◽  
Vol 16 (2) ◽  
pp. 107-114
Author(s):  
. Marsi ◽  
. Sabaruddin

Ultisols and Inceptisols were used to investigate the adsorption-desorption capacity of P and the effect of organic matter on the dynamics of P availability in tropical acid soils. The experiment consisted of two sub-experiments. Sub-experiment I was to study the adsorption-desorption capacity of Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Therefore, surface soils (0 to 30 cm) of each tested soil were treated with 0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 170, and 200 mg P kg-1 of soil. Sub-experiment II was to study the effects of organic matterapplication (0, 5, 10, and 15 Mg ha-1) on the dynamics of available P following 60d incubation under room temperature.P fertilizer application significantly affected water soluble-P (WSP) (p<0.01) and soil available P-Bray and Kurtz No. 1 (BKP) (p<0.01) in the three tested soils. The different response of both WSP and BKP confirmed that the soils tested in the current experiment had different soil P buffering capacity in the order of Tidal-lowlandInceptisol>Upland Ultisol>fresh-water Lowland Inceptisol. OM application increased the BKP in all tested soils as compared to the control. Differences in pattern of soil available P dynamics over time were detected between upland soil and two lowland soils used in the current experiment.Keywords: Adsorption-desorption, Inceptisols, organic matter, Ultisols


2020 ◽  
Vol 7 (1) ◽  
pp. 39
Author(s):  
Kurnia Dewi Sasmita ◽  
Iswandi Anas ◽  
Syaiful Anwar ◽  
Sudirman Yahya ◽  
Gunawan Djajakirana

<em>The growth of cacao in acid soils is commonly limited by some problems such as low available P and pH, and high Al saturation. Therefore, research is needed to solve the problem of coffee cultivation in acid soil. This study aimed to determine the effect of ameliorant, phosphate solubilizing microbes (PSM), and phosphate fertilizers (P) on the growth and nutrient uptake of cacao seedlings, and some acid soil properties. The study used a randomized block design with 3 factors and 3 replications. The first factor was ameliorant applications (without ameliorant, 10% organic fertilizer, 4% rice husk biochar, 4% rice husk biochar + 10% organic fertilizer). The second factor was PSM applications: without PSM, Burkholderia ambifaria (BPF) inoculants, and Aspergillus niger (FPF) inoculants. The third factor was P fertilizers applications (without Phosphate Rock (PR), 100, 200, and 400 mg P/kg of PR, and 400 mg P/kg of SP-36). The results showed that the applications of 4% rice husk biochar + 10% organic fertilizer + BPF or FPF inoculants increase the number of leaves by 77.9% and 69.2%, respectively, and increase the dry weight of shoot by 93.6 % and 101.9%, respectively. Phosphate rock application in media without organic fertilizer increases dry weight of shoots and roots of cacao seedlings, and the uptake of P, Ca, and Mg in shoots linearly in line with the increase of PR dose to 400 mg P/kg. Application of rice husk biochar significantly increased the acid phosphatase activity of growing media. Meanwhile, organic fertilizer increased the soil pH, acid phosphatase and available P activity, and decreased Al-dd growing media.</em>


2017 ◽  
Vol 14 (3) ◽  
Author(s):  
Any Kusumastuti

The experiment was conducted at field experiment of Lampung State Polytechnic from June up to November 2012, using complete randomized block design with factorial pattern, which consists of two factors, and three replications. The first factor is organic matter (POME) dosage, consists of three dosages (without POME, 25% POME with 75% soil, and 50% POME with 50% soil). The second factor is dosage of SP-36 Fertilizer (without SP-36, 1.8 g, 3.6 g, and 5.4 g SP-36 per polybag (plant) respectively. The study aims was to determine (1) The dynamics of soil available P, (2) The effect of the best POME dosage for pH, C-organic and P uptake, (3) The effect of the best SP-36 dosage for pH, C-organic and P uptake, (4) The interaction between dosages of POME and SP-36 on pH, C-organic and P uptake of plant. The observation consists of (a) Soil available P, (b) pH and C-organic (c) and P uptake of plant. The data was analysis with variance analysis, furthermore, if the result is significance, was continued with LSD test, but soil available P dynamics was presented in graphic form. The result showed that (a) Applications of POME and SP-36 increase the soil available P, (b) The media with 25% POME and 50% POME were gave the better result on pH, C-organic and P uptake by plant, (c) SP-36 fertilizer fertilizer at various doses has not been any impact on soil pH, organic-C and P uptake of plants (d) There is no interaction between POME and SP-36 fertilizer on soil pH, organic C and P uptake of plants Keywords : P Dynamics, P Uptake of Patchouli, Pogostemon cablin, ultisols


2007 ◽  
Vol 38 (1) ◽  
pp. 93-106 ◽  
Author(s):  
M. M. Msolla ◽  
J. M. R. Semoka ◽  
C. Szilas ◽  
O. K. Borggaard

2020 ◽  
Author(s):  
Bifeng Hu ◽  
Nicolas Saby ◽  
Hocine Bourennane ◽  
Thomas Opitz ◽  
Pascal Denoroy ◽  
...  

&lt;p&gt;Soil phosphorus (P) is one of the most critical elements for Earth&amp;#8217;s ecosystem. P is a component of the complex nucleic acid structure of plants, which regulates protein synthesis, plants deficient in P are stunted in growth and lead to diseases. In practice, P is most often the element responsible for eutrophication problems in freshwater meanwhile, and it is considered the macronutrient most frequently as the element limiting eutrophication because many blue-green algae are able to use atmospheric N&lt;sub&gt;2&lt;/sub&gt;. Since the Second World War overuse application of fertilizer P has leaded to lots of serious environmental problems such as eutrophication of water body.&lt;/p&gt;&lt;p&gt;Soil P was affected by several factors including climate, geology, time, anthropogenic activities (irrigation, industrial emission, fertilizer application, crop planting pattern etc.) and so on. This makes soil P varied in a very complex manner on both spatial and time dimension and thus increases the difficulty of estimating spatio-temporal variation of soil P. Therefore, a flexible framework is necessary for modelling spatio-temporal variation of soil P.&lt;/p&gt;&lt;p&gt;To explore spatio-temporal variation of soil available P, we propose a Bayesian hierarchical spatio-temporal model using Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation approach (INLA-SPDE). The study was conducted on phosphorus measured by Olsen (P Olsen) and Dyer (P Dyer) methods in Britany (western France) from 1995 to 2014 with data of more than 30,000 samples of France national soil test database (BDAT).&lt;/p&gt;&lt;p&gt;The INLA-SPDE method exploits the Laplace approximation in Bayesian latent-Gaussian models and does not require generating samples from the posterior distribution. Hence, it can often be used for quite large data sets at reasonable computational expense. It could provide approximate marginal (posterior) distributions over all states and parameters. In this study, the constructed model includes of several components such as spatial varying trend, space varying temporal trend, effects of covariates, and residual with space-time dependent variation.&lt;/p&gt;&lt;p&gt;Regardless the method of quantifying phosphorus, the results indicated that the mean content of soil available P decreased between 1995 and 2014 in Britany. Our model explained 49.5% of variance of spatio-temporal variation of P Olsen in Britany in external validation dataset. For P Dyer, our model explained 50% of variance in external validation dataset. The purely spatial effects shown that the available P in west of Britany was higher than east part. Our study could contribute to better soil management and environmental protection. Further study still needed to include more related factors into the model to improve the model performance and detected more related factors (such as soil management measures) which have important effects on spatio-temporal variation of available P in soil.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document