scholarly journals Towards Modal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape: Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics (Invited Paper)

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Athanasios G. Lazaropoulos

The established statistical analysis, already used to treat overhead transmission power grid networks, is now implemented to examine the factors influencing modal transmission characteristics and modal statistical performance metrics of overhead and underground low-voltage/broadband over power lines (LV/BPL) and medium-voltage/broadband over power lines (MV/BPL) channels associated with power distribution in smart grid (SG) networks. The novelty of this paper is threefold. First, a refined multidimensional chain scattering matrix (TM2) method suitable for overhead and underground LV/BPL and MV/BPL modal channels is evaluated against other relative theoretical and experimental proven models. Second, applying TM2 method, the end-to-end modal channel attenuation of various LV/BPL and MV/BPL multiconductor transmission line (MTL) configurations is determined. The LV/BPL and MV/BPL transmission channels are investigated with regard to their spectral behavior and their end-to-end modal channel attenuation. It is found that the above features depend drastically on the frequency, the type of power grid, the mode considered, the MTL configuration, the physical properties of the cables used, the end-to-end distance, and the number, the electrical length, and the terminations of the branches encountered along the end-to-end BPL signal propagation. Third, the statistical properties of various overhead and underground LV/BPL and MV/BPL modal channels are investigated revealing the correlation between end-to-end modal channel attenuation and modal root-mean-square delay spread (RMS-DS). Already verified in the case of overhead high-voltage (HV) BPL systems, this fundamental property of several wireline systems is also modally validated against relevant sets of field measurements, numerical results, and recently proposed statistical channel models for various overhead and underground LV/BPL and MV/BPL channels. Based on this common inherent attribute of either transmission or distribution BPL networks, new unified regression trend line is proposed giving a further boost towards BPL system intraoperability. A consequence of this paper is that it aids in gaining a better understanding of the range and coverage that BPL solutions can achieve; a preliminary step toward the system symbiosis between BPL systems and other broadband technologies in an SG environment.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This paper considers broadband signal transmission and statistical performance properties of high-voltage/broadband over power lines (HV/BPL) channels associated with overhead power transmission. The overhead HV/BPL transmission channel is investigated with regard to its spectral behavior, its end-to-end signal attenuation, and its statistical performance metrics. It is found that the above features depend critically on the frequency, the overhead HV power grid type (150 kV, 275 kV, or 400 kV and single- or double-circuit), the coupling scheme applied, the physical properties of the cables used, the MTL configuration, and the type of branches existing along the end-to-end BPL signal propagation. The contribution of this paper is threefold. First, the significant broadband transmission potential of overhead HV lines is revealed. The results demonstrate that, regardless of overhead HV power grid type, the overhead HV grid is a potentially excellent communications medium, offering low-loss characteristics, flat-fading features, and low multipath dispersion over a 25 km repeater span well beyond 100 MHz. Second, regarding the statistical properties of various overhead HV/BPL transmission channels, two fundamental correlations of several wireline systems, for example, coaxial cables and xDSL, are also validated in the case of overhead HV/BPL transmission channels, namely, (i) end-to-end channel attenuation in relation with root-mean-square delay spread (RMS-DS) and (ii) coherence bandwidth (CB) in relation with RMS-DS. Third, fitting the numerical results and other field trial measurements, two regression distributions suitable for each fundamental correlation are proposed.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Athanasios G. Lazaropoulos

The need of bridging the digital gap between underdeveloped/developed areas and promoting smart grid (SG) networks urges the deployment of broadband over power lines (BPL) systems and their further integration. The contribution of this paper is fourfold. First, based on the well-established hybrid model of (Lazaropoulos and Cottis 2009, 2010, Lazaropoulos, 2012) and the generic multidimensional network analysis tool presented in (Lazaropoulos 2012, Sartenaer 2004, Sartenaer and Delogne 2006, 2001) an exact multidimensional chain scattering matrix method, which is suitable for overhead high-voltage/broadband over power lines (HV/BPL) networks, is proposed and is evaluated against other theoretical and experimental proven models. Second, the proposed method investigates the overhead HV/BPL transmission grids (overhead 150 kV single-circuit, 275 kV double-circuit, and 400 kV double-circuit multiconductor structures) with regard to their end-to-end signal attenuation. It is found that the above features depend drastically on the overhead power grid type, the frequency, the MTL configuration, the physical properties of the cables used, the end-to-end distance, and the number, the length, and the terminations of the branches encountered along the end-to-end BPL signal propagation. Third, the impact of the multiplicity of the branches at the same junction in overhead HV grids is first examined. Based on the inherent long-branch structure and the quasi-static behavior of single/multiple branches with matched terminations of overhead HV grid, a simple approach suitable for overhead HV/BPL channel estimation is presented. Fourth, identifying the similar characteristics among different overhead HV/BPL configurations, an additional step towards the common overhead HV/BPL analysis is demonstrated; the entire overhead HV/BPL grid may be examined under a common PHY framework regardless of the overhead HV/BPL grid type examined. Finally, apart from the presentation of broadband transmission potential of the entire overhead transmission power grid, a consequence of this paper is that it helps towards: (i) the better broadband monitoring and management of overhead HV transmission power grids in an interactive SG network; and (ii) the intraoperability/interoperability of overhead HV/BPL systems under the aegis of a unified transmission/distribution SG power network.


2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This paper investigates the efficiency and accuracy of the best L1 piecewise monotonic data approximation (best L1PMA) in order either to approximate the transfer functions of distribution BPL networks or to reveal the aforementioned transfer functions when various faults occur during their determination. The contribution of this paper is quadruple. First, based on the inherent piecewise monotonicity of distribution BPL transfer functions, a piecewise monotonic data approximation is first applied in BPL networks; best L1PMA is outlined and applied during the determination of distribution BPL transfer functions. Second, suitable performance metrics such as the percent error sum (PES) and fault PES are reported and applied so as to assess the efficiency and accuracy of the best L1PMA during the determination of distribution BPL transfer functions. Third, the factors of distribution BPL networks that influence the performance of best L1PMA are identified. Fourth, the accuracy of the best L1PMA is assessed with respect to its inherent properties, namely, the assumed number of monotonic sections and the nature of faults, that is, faults that follow either continuous uniform distribution (CUD) or normal distribution (ND), during the determination of distribution BPL transfer functions. Finally, best L1PMA may operate as the necessary intermediate antifault method for the theoretical and practical transfer function determination of distribution BPL networks.


2013 ◽  
Vol 2013 ◽  
pp. 1-30 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This review paper reveals the broadband potential of overhead and underground low-voltage (LV) and medium-voltage (MV) broadband over power lines (BPL) networks associated with multiple-input multiple-output (MIMO) technology. The contribution of this review paper is fourfold. First, the unified value decomposition (UVD) modal analysis is introduced. UVD modal analysis is a new technique that unifies eigenvalue decomposition (EVD) and singular value decomposition (SVD) modal analyses achieving the common handling of traditional SISO/BPL and upcoming MIMO/BPL systems. The validity of UVD modal analysis is examined by comparing its simulation results with those of other exact analytical models. Second, based on the proposed UVD modal analysis, the MIMO channels of overhead and underground LV and MV BPL networks (distribution BPL networks) are investigated with regard to their inherent characteristics. Towards that direction, an extended collection of well-validated metrics from the communications literature, such as channel attenuation, average channel gain (ACG), root-mean-square delay spread (RMS-DS), coherence bandwidth (CB), cumulative capacity, capacity complementary cumulative distribution function (CCDF), and capacity gain (GC), is first applied in overhead and underground MIMO/LV and MIMO/MV BPL channels and systems. It is found that the results of the aforementioned metrics portfolio depend drastically on the frequency, the power grid type (either overhead or underground, either LV or MV), the MIMO scheme configuration properties, the MTL configuration, the physical properties of the cables used, the end-to-end distance, and the number, the electrical length, and the terminations of the branches encountered along the end-to-end BPL signal propagation. Third, three interesting findings concerning the statistical properties of MIMO channels of distribution BPL networks are demonstrated, namely, (i) the ACG, RMS-DS, and cumulative capacity lognormal distributions; (ii) the correlation between RMS-DS and ACG; and (iii) the correlation between RMS-DS and CB. By fitting the numerical results, unified regression distributions appropriate for MIMO/BPL channels and systems are proposed. These three fundamental properties can play significant role in the evaluation of recently proposed statistical channel models for various BPL systems. Fourth, the potential of transformation of overhead and underground LV/BPL and MV/BPL distribution grids to an alternative solution to fiber-to-the-building (FTTB) technology is first revealed. By examining the capacity characteristics of various MIMO scheme configurations and by comparing these capacity results against SISO ones, a new promising urban backbone network seems to be born in a smart grid (SG) environment.


2010 ◽  
Vol 108-111 ◽  
pp. 771-776
Author(s):  
Nan Tian Huang ◽  
Xiao Sheng Liu ◽  
Dian Guo Xu

The power line communication (PLC) channel has been a transmission medium that enables to transfer high-speed digital data through the classical electrical wires. Channel characteristics of power lines are very important for communications systems design. In order to get the suitable model for power line communications analysis and improve the PLC communication quality, researchers do lots of study about the PLC channel characterizations based on actual measurement and theoretical analysis. This paper reviews the conclusions of recent studies, summaries the characteristics of PLC channel for medium voltage power lines and low voltage power lines. The further research is also put forward.


Vestnik IGEU ◽  
2019 ◽  
pp. 75-83 ◽  
Author(s):  
А.В. Gadalov ◽  
S.V. Kosyakov

Analytical methods that are currently used to determine transformer substation placement in the process of planning the development of low-voltage distribution networks are based on calculating the lengths of future power lines by Euclidean distance, or methods for comparing several alternative placement options taking into account the routes of power lines. Assumptions made in this case lead to the fact that for the selected location of the substation, the total cost of the power lines connected to it may exceed the possible minimum. The use of modern GIS technologies allows simulating the routes of laying power lines on the map bypassing the existing obstacles or finding the cheapest routes for crossing them. These opportunities can be used to improve the quality of designing urban distribution networks through minimizing the construction cost of new power lines. However, the methods of organizing the solution to such a design problem have not yet found practical applications. The aim of the work is to develop a practical method of designing the placement of power substations in the GIS environment and its verification using real data. The paper uses methods of spatial modeling in the GIS environment, including methods of overlay, finding optimal paths on graphs and power grid inventory, as well as discrete optimization methods. A method of computer-aided design of transformer substation placement in urban distribution low-voltage networks is proposed and implemented as a GIS software module, which allows finding the optimal options of the placement cost at the stages of network scheme selection. The paper presents the results of the method analysis based on studying the design of the power grid scheme of Ivanovo city quarters as an example. The results confirm the possibility of using GIS to improve the quality of decisions on the choice of placement of low voltage distribution substations when designing urban electrical networks and can be used in the electrical networks CAD.


Sign in / Sign up

Export Citation Format

Share Document