scholarly journals Incompatibility Alleles in Portuguese Hazelnut Landraces

ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Sandra Martins ◽  
Mercè Rovira ◽  
Ana Paula Silva ◽  
Valdemar Carnide

In many higher plants, selffertilization and genetically related individuals are prevented by pollen-stigma incompatibility. In the genus Corylus, incompatibility is of the sporophytic type and controlled by a single locus with multiple alleles. The objective of this study is to identify the S-alleles present in a collection of Portuguese landraces in order to select the most appropriate landraces for establishment of future orchards and for breeding programmes. Ten major Portuguese hazelnut landraces were submitted to controlled pollinations in the field, with 18 genotypes whose S-alleles are known. The pollen tubes were observed at 100X under a florescence microscope to evaluate their development. Three landraces were revealed to have S2 allele, two have S5, and four have one of the S3, S5, S10, and S18 alleles. One landrace was compatible with the 18 S-alleles tested and for two landraces, it was possible to identify both alleles. The information of the self-incompatibility relationship between these old cultivars is obviously useful for selecting the most suitable pollinators for planning new orchards and for new cultivars development.

2013 ◽  
Vol 40 (No. 2) ◽  
pp. 65-71 ◽  
Author(s):  
D. Milatović ◽  
D. Nikolić ◽  
B. Krška

Self-(in)compatibility was tested in 40 new apricot cultivars from European breeding programmes. Pollen-tube growth in pistils from laboratory pollinations was analysed using the fluorescence microscopy. Cultivars were considered self-compatible if at least one pollen tube reached the ovary in the majority of pistils. Cultivars were considered self- incompatible if the growth of pollen tubes in the style stopped along with formation of characteristic swellings. Of the examined cultivars, 18 were self-compatible and 22 were self-incompatible. Fluorescence microscopy provides a relatively rapid and reliable method to determine self-incompatibility in apricot cultivars.      


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 432
Author(s):  
Yaling Chen ◽  
Benchang Hu ◽  
Fantao Zhang ◽  
Xiangdong Luo ◽  
Jiankun Xie

Dendrobium officinale is a rare and traditional medicinal plant with high pharmacological and nutritional value. The self-incompatibility mechanism of D. officinale reproductive isolation was formed in the long-term evolution process, but intraspecific hybridization of different germplasm resources leads to a large gap in the yield, quality, and medicinal value of D. officinale. To investigate the biological mechanism of self-incompatibility in D. officinale, cytological observation and the transcriptome analysis was carried out on the samples of self-pollination and cross-pollination in D. officinale. Results for self-pollination showed that the pollen tubes could grow in the style at 2 h, but most of pollen tubes stopped growing at 4 h, while a large number of cross-pollinated pollen tubes grew along the placental space to the base of ovary, indicating that the self-incompatibility of D. officinale may be gametophyte self-incompatibility. A total of 63.41 G basesum of D. officinale style samples from non-pollinated, self-pollination, and cross-pollination by RNA-seq were obtained, and a total of 1944, 1758, and 475 differentially expressed genes (DEGs) in the comparison of CK (non-pollinated) vs. HF (cross-pollination sample), CK vs. SF (self-pollination sample) and SF vs. HF were identified, respectively. Forty-one candidate genes related to self-incompatibility were found by function annotation of DEGs, including 6 Ca2+ signal genes, 4 armed repeat containing (ARC) related genes, 11 S-locus receptor kinase (SRK) related genes, 2 Exo70 family genes, 9 ubiquitin related genes, 1 fatty acid related gene, 6 amino acid-related genes, 1 pollen-specific leucine-rich repeat extensin-like protein (LRX) related gene and 1 lectin receptor-like kinases (RLKs) related gene, showed that self-incompatibility mechanism of D. officinale involves the interaction of multiple genes and pathways. The results can provide a basis for the study of the self-incompatibility mechanism of D. officinale, and provide ideas for the preservation and utilization of high-quality resources of D. officinale.


1991 ◽  
pp. 271-283 ◽  
Author(s):  
J. E. Gray ◽  
B. A. McClure ◽  
I. Bonig ◽  
M. A. Anderson ◽  
A. E. Clarke

2000 ◽  
Vol 12 (7) ◽  
pp. 1239-1251 ◽  
Author(s):  
Anja Geitmann ◽  
Benjamin N. Snowman ◽  
Anne Mie C. Emons ◽  
Vernonica E. Franklin-Tong

1997 ◽  
Vol 12 (6) ◽  
pp. 1375-1386 ◽  
Author(s):  
Vernonica E. Franklin-Tong ◽  
Grant Hackett ◽  
Peter K. Hepler

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1758
Author(s):  
Mariana Oliveira Duarte ◽  
Denise Maria Trombert Oliveira ◽  
Eduardo Leite Borba

In most species of Pleurothallidinae, the self-incompatibility site occurs in the stylar canal inside the column, which is typical of gametophytic self-incompatibility (GSI). However, in some species of Acianthera, incompatible pollen tubes with anomalous morphology reach the ovary, as those are obstructed in the column. We investigated if a distinct self-incompatibility (SI) system is acting on the ovary of A. johannensis, which is a species with partial self-incompatibility, contrasting with a full SI species, A. fabiobarrosii. We analyzed the morphology and development of pollen tubes in the column, ovary, and fruit using light, epifluorescence, and transmission electron microscopy. Our results show that the main reaction site in A. johannensis is in the stylar canal inside the column, which was also recorded in A. fabiobarrosii. Morphological and cytological characteristics of the pollen tubes with obstructed growth in the column indicated a process of programmed cell death in these tubes, showing a possible GSI reaction. In addition, partially self-incompatible individuals of A. johannensis exhibit a second SI site in the ovary. We suggest that this self-incompatibility site in the ovary is only an extension of GSI that acts in the column, differing from the typical late-acting self-incompatibility system recorded in other plant groups.


2000 ◽  
Vol 12 (7) ◽  
pp. 1239 ◽  
Author(s):  
Anja Geitmann ◽  
Benjamin N. Snowman ◽  
Anne Mie C. Emons ◽  
Vernonica E. Franklin-Tong

2019 ◽  
Author(s):  
Sorush Niknamian

Abstract One of the problems in almond production is self-incompatibility in this plant, which is considered as an important improvement point for this tree. Self-incompatibility causes non-uniformity and garden management problems. Most cultivars of almonds have gametophytic self-incompatibility that is controlled by a multi-allelic gene site. The inoculation inhibitor factor in this inhibitory system is the stop of pollen tube growth in the style. This study aims to detect and determine the self-compatible genotype from among the studied samples and determine the self-incompatibility alleles in the studied masses. For the experiment, the leaf samples were collected from 100 almond genotypes that had good products in recent years. The DNA of young leaf samples in these genotypes was extracted using Gept and Celeg (1989) method with a few changes. Today, various methods have been invented for detecting the genotypes and self-compatible cultivars from selfincompatible cultivars as well as S alleles in almonds, including the PCR method. Therefore, in order to detect S alleles in different almond and some hybrid genotypes, the exclusive primer pairs, including AS1II-AmyC5R, ConF-ConR and Cebador2-Cebador8, were used in the polymerase chain reaction. All of the primers have been used by other researchers to detect almond alleles and the effectiveness of these pairs of primers was confirmed in this experiment. Using the AS1IIAmyC5R and Cebador2-Cebador8 primers, the Sf allele with the size of 1200 base pairs was detected. Using the ConF-ConR pair of primer, the S1, S2, S3, S10, S11, S23, and S31 alleles were detected in the self-incompatible samples. Using AS1II-AmyC5R pair of primer, the known alleles of S3, Sf, S2, S1, S5, S10, S11, S23, and S13 were detected. The other bands obtained from the PCR were related to the known self-incompatibility alleles that might be considered as new alleles. In the study population in this research, S1, S2, S3, and S11 alleles had higher frequency.


Sign in / Sign up

Export Citation Format

Share Document