scholarly journals Thermal Diffusion and Mass Transfer Effects on MHD Flow of a Dusty Gas through Porous Medium

2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Rajesh Kumar ◽  
Devendra Kumar ◽  
R. K. Shrivastav

The present problem is concerned with the thermal diffusion mass transfer effects on MHD free convective flow of dusty gas through a porous medium induced by the motion of a semi-infinite flat plate moving with velocity decreasing “exponentially with time”. The effects of various parameters like magnetic parameter M thermal diffusion effect as soret number S1, permeability parameter K1, Schimdt number Sc are taken into account. The velocity profile, temperature field, and concentration of incompressible dusty gas and dust particles for several parameters are discussed numerically and explained graphically.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gladys Tharapatla ◽  
Pamula Rajakumari ◽  
Ramana G.V. Reddy

Purpose This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach. Design/methodology/approach The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations. Findings Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force. Originality/value The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Nabil T. M. Eldabe ◽  
Bothaina M. Agoor ◽  
Heba Alame

This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.


Sign in / Sign up

Export Citation Format

Share Document