scholarly journals Fragmentation of Plasmid DNA Produced by Gamma Radiation: A Theoretical Approach

2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
R. A. S. Silva ◽  
J. D. T. Arruda-Neto ◽  
L. Nieto

Breaks in DNA, resulting in fragmented parts, can be produced by ionizing radiation which, in turn, is the starting point in the search for novel physical aspects of DNA strands. Double-strand breaks in particular cause disruption of the DNA strand, splitting it into several fragments. In order to study effects produced by radiation in plasmid DNA, a new simple mechanical model for this molecule is proposed. In this model, a Morse-like potential and a high-LET component are used to describe the DNA-radiation interaction. Two power laws, used to fit results of the model, suggest that, firstly, distribution of fragment size is nonextensive and, secondly, that a transition phase is present in the DNA fragment distribution pattern.

2019 ◽  
Vol 116 (12) ◽  
pp. 5505-5513 ◽  
Author(s):  
Elda Cannavo ◽  
Giordano Reginato ◽  
Petr Cejka

To repair DNA double-strand breaks by homologous recombination, the 5′-terminated DNA strands must first be resected to produce 3′ overhangs. Mre11 fromSaccharomyces cerevisiaeis a 3′ → 5′ exonuclease that is responsible for 5′ end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5′-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3′ end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3′ → 5′ exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5′-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3′ → 5′ degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5′-terminated DNA.


2012 ◽  
Vol 177 (5) ◽  
pp. 614-627 ◽  
Author(s):  
Takeshi Ushigome ◽  
Naoya Shikazono ◽  
Kentaro Fujii ◽  
Ritsuko Watanabe ◽  
Masao Suzuki ◽  
...  

1983 ◽  
Vol 3 (4) ◽  
pp. 605-612 ◽  
Author(s):  
J R Rusche ◽  
W K Holloman

Using a nitrocellulose filter binding assay, we have partially purified a protein from mitotic cells of Ustilago maydis that binds preferentially to covalently closed circular duplex DNA. DNA containing single- or double-strand breaks is bound poorly by the protein. Once formed, the DNA-protein complex is stable, resisting dissociation in high salt. However, when a DNA strand is broken, the complex appears to dissociate. The protein binds equally well to form I DNA of phi X174 or the plasmid pBR322, but has a higher affinity for a hybrid plasmid containing a cloned region of Drosophila melanogaster satellite DNA.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161973 ◽  
Author(s):  
Falco Reissig ◽  
Constantin Mamat ◽  
Joerg Steinbach ◽  
Hans-Juergen Pietzsch ◽  
Robert Freudenberg ◽  
...  

2021 ◽  
Vol 118 (11) ◽  
pp. e2016287118
Author(s):  
Aleksandar Zdravković ◽  
James M. Daley ◽  
Arijit Dutta ◽  
Tatsuya Niwa ◽  
Yasuto Murayama ◽  
...  

The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5′-ended DNA strands at DSB ends, producing 3′-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulates MRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.


Sign in / Sign up

Export Citation Format

Share Document