scholarly journals Durability Experiences on the Traditional and SCM Founded Blended Concrete

Author(s):  
Eti Tirumala Chakrapani ◽  
◽  
A M N Kashyap ◽  
G Anjaneyulu ◽  
M R Manikanta ◽  
...  

Concrete might be the maximum substantially used construction material in the global with approximately six billion tones being produced each year. It is best subsequent to water in phrases of in keeping with-capita consumption. However, environmental sustainability is at stake both in terms of damage due to the extraction of raw material and CO2 emission all through cement manufacture. This brought pressures on researchers for the discount of cement intake by means of partial substitute of cement by using supplementary materials. These materials may be obviously happening, industrial wastes or by way of-products that are less energy extensive. Fly ash and Ground Granulated Burnt Slag (GGBS) are selected specifically based totally on the standards of fee and their long lasting qualities., Not best this, Environmental pollution also can be decreased to a point due to the fact the emission of dangerous gases like carbon monoxide & carbon dioxide are very restricted. These substances (referred to as pozzalonas) when combined with calcium hydroxide, reveals cementitious compositions. Most commonly used pozzalonas are fly ash, silica fume, met kaolin, ground granulated blast furnace slag (GGBS). This wishes to look at the admixtures performance whilst combined with concrete so as to ensure a discounted existence cycle fee. The present research consists of three phases and reports the specializes in investigating characteristics of M35grade concrete .In the 1st phase the behavior of standard and SCM concrete (7.5%FA and 7.5%GGBS) of M35 grade specimens with different percentages of chemical admixtures curing with acids such as HCL. 2nd phase the same grade of specimens curing with Alkaline such as NaOH and in the 3rd phase the same grade of specimens curing with sulphate solution MgSO4 and finally assess the losses of mechanical properties and durability considerations of the concrete due to these conditions were reported.

2021 ◽  
Vol 1 (2) ◽  
pp. 1-4
Author(s):  
Eti tirumala Chakrapani* ◽  
A M N Kashyap ◽  
Anjaneyulu, G ◽  
Manikanta M R

Concrete might be the maximum substantially used construction material in the global with approximately six billion tones being produced each year. It is best subsequent to water in phrases of in keeping with-capita consumption. However, environmental sustainability is at stake both in terms of damage due to the extraction of raw material and CO2 emission all through cement manufacture. This brought pressures on researchers for the discount of cement intake by means of partial substitute of cement by using supplementary materials. These materials may be obviously happening, industrial wastes or by way of-products that are less energy extensive. Fly ash and Ground Granulated Burnt Slag (GGBS) are selected specifically based totally on the standards of fee and their long lasting qualities., Not best this, Environmental pollution also can be decreased to a point due to the fact the emission of dangerous gases like carbon monoxide & carbon dioxide are very restricted. These substances (referred to as pozzalonas) when combined with calcium hydroxide, reveals cementitious compositions. Most commonly used pozzalonas are fly ash, silica fume, met kaolin, ground granulated blast furnace slag (GGBS). This wishes to look at the admixtures performance whilst combined with concrete so as to ensure a discounted existence cycle fee. The present research consists of three phases and reports the specializes in investigating characteristics of M35grade concrete .In the 1st phase the behavior of standard and SCM concrete (7.5%FA and 7.5%GGBS) of M35 grade specimens with different percentages of chemical admixtures curing with acids such as HCL. 2nd phase the same grade of specimens curing with Alkaline such as NaOH and in the 3rd phase the same grade of specimens curing with sulphate solution MgSO4 and finally assess the losses of mechanical properties and durability considerations of the concrete due to these conditions were reported.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Chan-Yi Lin ◽  
Tai-An Chen

The compressive strengths of fly ash-based alkali-activated materials (AAM), produced using various activators of only sodium hydroxide, were measured. Fly ash-based AAM specimens, produced by mixing different kinds of fly ash and ground granulated blast-furnace slag (GGBFs) with an activator containing only sodium hydroxide, were cured at ambient temperature, and then placed in air for different numbers of days. The short- and long-term compressive strengths and shrinkage of fly ash-based AAM were measured and compared to one another. The effects of type of fly ash, alkali-equivalent content, GGBFs replace percentage, and ages on the compressive strengths and shrinkage of fly ash-based AAM were investigated. Even when different fly ash was used as the raw material for AAM, a similar compressive strength can be achieved by alkali-equivalent content, GGBFs replaces percentage. However, the performance of shrinkage due to different types of fly ash differed significantly.


2020 ◽  
Vol 897 ◽  
pp. 98-105
Author(s):  
Thanh Sang Nguyen ◽  
Thanh Sang Nguyen

Fly ash and ground granulated blast furnace slag (GGBFS) is a green construction material used to produce durable concrete. Experimental research on eco-concrete uses incorporating cement, fly ash and GGBFS. Fly ash and GGBFS replace different cement content by weighing, evaluating the workability, mechanical properties and durability of eco-concrete. The results also show that combining fly ash and GGBFS in concrete can create compressive strength concrete of 55MPa while the amount of cement used for 1m3 of co-concrete does not exceed 300 kilograms, the research also judges the water absorption, the chloride penetration resistance at 28 days with 30% replacement of GGBFS.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2013 ◽  
Vol 12 (3) ◽  
pp. 215-222
Author(s):  
Katarzyna Synowiec

The paper presents the tests results of the properties of non - standard fly ash - slag cements composition. Both natural (unprocessed) and activated by grinding calcareous fly ash was used. It was found that the calcareous fly ash next to the granulated blast furnace slag may be a component of low - clinker cements (ca. 40%). Those cements are characterized by low heat of hydration and overdue of initial setting time in comparison with Ordinary Portland Cement, moreover they have an unfavorable effect on consistency and its upkeep in time. Production of fly ash - slag cements is possible for strength class 32,5 N when the component of cement is raw fly ash, and for strength classes 32,5 N, 32,5 R and 42,5 N when ground fly ash was used. Fly ash activated by grinding was characterized by higher activity.


2019 ◽  
Vol 7 (1) ◽  
pp. 126-136
Author(s):  
Hakan Çağlar ◽  
Arzu Çağlar

In this study, it is aimed to make improvements on blended brick (1) which is the first building material has a history of at least 10,000 years. To the blended brick which is a traditional material was kept constant at 5% the addition of fly ash which is industrial waste. It was aim of determine of the effect on the physical and mechanical properties of the blended brick using different ratios (5%, 10%, 15% and 20%) blast furnace slag. In the first stage, the production of fly ash-based blast furnace slag doped sample of blended brick was performed. In the second stage, a variety of experiments were applied to determine the physical and mechanical properties of the blended brick sample. As a result; It has been determined that unit volume weight and compressive strength decreases with the use of industrial wastes in blended brick production. They have occured an increase in porosity and capillary water absorption values. The use of industrial wastes in the production of blended bricks will contribute both improve the properties of the bricks and   the reduction of wastes left to the environment.


Sign in / Sign up

Export Citation Format

Share Document