Analysis of the Coordination of Suppression and Ventilation in Multi-Family Dwellings

2020 ◽  
Author(s):  
Keith Stakes ◽  
◽  
Keith Stakes ◽  
Julie Bryant ◽  
Nick Dow ◽  
...  

The majority of the existing full-scale fire service research studied the impact of tactics on the residential fireground, specifically in single-family structures. This study builds upon prior research by conducting thirteen experiments in three-story, multi-family dwellings to quantify the impact of coordination between ventilation and suppression actions. Experiments were conducted in four, garden-style apartment buildings; each of which had two lower-level units, four first-floor units, and four second-floor units. The apartments shared a common stairwell that was enclosed for all of the experiments in this study. To examine the effectiveness of tactics in the fire apartment, common stairwell and applicable exposure apartments, four experiments were conducted in lower-level apartments, seven were conducted in first-floor apartments, and two were conducted in second-floor apartments including both bedroom and kitchen/living room fires. The fire size varied based on the amount of initial ventilation provided. The main control variables included the location of initial water application, the ventilation method, and the timing of ventilation relative to water application. The suppression tactics included interior water application, exterior water application followed by interior water application, and a combined interior and exterior water application. The ventilation tactics examined in these experiments included horizontal, vertical, positive pressure, and hydraulic ventilation. Similar to previous experiments in acquired single-family structures, there was no meaningful increase in temperature outside of fire rooms when ventilation tactics were executed in close coordination with (shortly after or shortly before) the onset of suppression. In contrast, for experiments where ventilation occurred with delayed suppression, temperature exposures increased throughout the fire apartment, and in experiments where the apartment door was left open, temperatures and carbon monoxide exposures increased throughout the common stairwell. Suppression actions, whether interior or exterior, resulted in a decrease in temperatures and gas concentrations at locations where occupants may potentially be located. The enclosed common stairwell, a unique feature of this experimental series, acted as capture of combustion products. Opening the apartment door to gain access should be thought of as an important ventilation action, both in terms of its potential to cause fire growth and its potential for smoke movement into the stairwell, limiting the egress for potentially trapped occupants in exposure units. Tactics such as door control, positive pressure ventilation, and hydraulic ventilation which were used both simultaneous with and sequentially post-suppression were shown to limit gas flows into the stairwell. After effective suppression, structure ventilation operations should similarly be cognizant of gas flows, with the aim of establishing flow throughout all areas where occupants may be located.

2020 ◽  
Author(s):  
Jack Regan ◽  
◽  
Julie Bryant ◽  
Craig Weinschenk

Prior full-scale research with the fire service was primarily designed to isolate specific tactics, most often either ventilation or suppression, which allowed researchers to develop science-based recommendations related to the specific components of fireground operations studied in relatively controlled conditions. The current project went beyond earlier research by conducting twenty experiments in eight acquired, single-family residential structures and that combined fireground tactics to quantify the impact of coordination between ventilation and suppression actions. This experimental series included second-story bedroom fires (14 experiments) and first-floor kitchen fires (6 experiments). The main control variables studied included the position of initial application of water, the ventilation method, and the timing of ventilation relative to water application. The ventilation tactics examined in these experiments included horizontal, vertical, positive pressure, and hydraulic ventilation, while the suppression tactics included both interior water application and initial exterior water application followed by interior water application. While some elements of the experiments (e.g. structure floor plan and weather) resulted in increased variability, the lessons learned highlighted the importance of having a systematic approach to the implementation of tactics. Most importantly, there was no meaningful increase in temperature outside of fire rooms when ventilation tactics were executed in coordination with (shortly after or shortly before) the onset of suppression. The effectiveness of suppression actions in extinguishing the fire were dependent on the ability of those actions to 1) cool surfaces in the fire room and 2) wet unburned fuel. Exterior suppression actions on second-floor bedroom fires resulted in a decrease in temperatures throughout the second floor, followed by regrowth prior to final suppression through interior streams. When exterior suppression was performed on first-floor kitchen fires, where more complete fuel wetting was possible, regrowth was not observed prior to interior suppression. When surface cooling or fuel wetting are not possible due to the elevation of the fire room, missing ceiling, or obstacles, firefighters should consider alternative means of water distribution to improve the effectiveness of suppression actions from outside the fire room. Suppression actions, whether interior or exterior, generally resulted in a decrease in temperatures and gas concentrations at locations where occupants may potentially be located. Conditions improved most quickly at locations closest in proximity to the inlet of the flow path established between the front door and the fire room. For this reason, opening an exterior door to gain access should be thought of as an important ventilation action, both in terms of its potential to cause fire growth and its potential to improve conditions for potentially trapped occupants. After effective suppression, structure ventilation operations should similarly be cognizant of gas flows, with the aim of establishing flow throughout all areas where occupants may be located.


2016 ◽  
Author(s):  
Robin Zevotek ◽  
◽  
Steve Kerber

There is a continued tragic loss of firefighter and civilian lives, as shown by fire statistics. One significant contributing factor is the lack of understanding of fire behavior in residential structures resulting from the use of ventilation as a firefighter practice on the fire ground. The changing dynamics of residential fires as a result of the changes in home construction materials, contents, size and geometry over the past 30 years compounds our lack of understanding of the effects of ventilation on fire behavior. Positive Pressure Ventilation (PPV) fans were introduced as a technology to increase firefighter safety by controlling the ventilation. However, adequate scientific data is not available for PPV to be used without increasing the risk to firefighters. This fire research report details the experimental data from cold flow experiments, fuel load characterization experiments and full scale fire experiments. During the project it was identified that the positive pressure attack (PPA) and positive pressure ventilation (PPV) were often used interchangeably. For the purpose of this report they have been defined as PPA for when the fan is utilized prior to fire control and PPV for when the fan is used post fire control. The information from the full scale tests was reviewed with assistance from our technical panel of fire service experts to develop tactical considerations for the use of PPV fans in residential single family structures.


2011 ◽  
Vol 48 (4) ◽  
pp. 865-891 ◽  
Author(s):  
Stephen Kerber

Abstract There has been a steady change in the residential fire environment over the past several decades. These changes include larger homes, different home geometries, increased synthetic fuel loads, and changing construction materials. Several experiments were conducted to compare the impact of changing fuel loads in residential houses. These experiments show living room fires have flashover times of less than 5 min when they used to be on the order of 30 min. Other experiments demonstrate the failure time of wall linings, windows and interior doors have decreased over time which also impact fire growth and firefighter tactics. Each of these changes alone may not be significant but the all-encompassing effect of these components on residential fire behavior has changed the incidents that the fire service is responding to. This analysis examines this change in fire dynamics and the impact on firefighter response times and operational timeframes.


2017 ◽  
Author(s):  
Craig Weinschenk ◽  
◽  
Keith Stakes ◽  
Robin Zevotek

As research continues into how fire department interventions affect fire dynamics in the modern fire environment; questions continue to arise on the impact and implications of interior versus exterior fire attack on both firefighter safety and occupant survivability. Previous research into various types of fire ground ventilation, flow paths, and exterior fire streams has provided the fire service with an increased understanding of fire dynamics. However, in some instances, the information from the studies may not support current, experienced-based practices. This gap between the research to date and the fire ground suppression experience has driven the need for further study. Therefore, research into the various methods of fire attack will allow a broader understanding of how firefighter interventions on the fire ground can impact the outcome of both life safety and property protection. This study will build upon the fire research conducted to date by analyzing how firefighting tactics, specifically different fire suppression tools and tactics, affect the thermal exposure and survivability of both firefighters and building occupants and affect fire behavior in structures. The purpose of this study is to improve firefighter safety, fireground tactics, and the knowledge of fire dynamics by providing the fire service with scientific information, developed from water flow and full-scale fire testing, in representative single-family homes. The project will be comprised of 3 parts: • Part I: Water Distribution • Part II: Air Entrainment • Part III: Full-Scale Residential Fire Experiments This report details the results and analysis from the water distribution experiments. These tests were conducted without the presence of fire to gain a fundamental understanding of water flows into compartments. Each test was designed to quantify water distribution within a compartment by evaluating the differences caused by various application methods, hose stream types, nozzle movements, pressures/flow rates, stream locations and elevation angles.


2016 ◽  
Author(s):  
Robin Zevotek ◽  
◽  
Steve Kerber

There is a continued tragic loss of firefighter and civilian lives, as shown by fire statistics. One significant contributing factor is the lack of understanding of fire behavior in residential structures resulting from the use of ventilation as a firefighter practice on the fire ground. The changing dynamics of residential fires as a result of the changes in home construction materials, contents, size and geometry over the past 30 years compounds our lack of understanding of the effects of ventilation on fire behavior. Positive Pressure Ventilation (PPV) fans were introduced as a technology to increase firefighter safety by controlling the ventilation. However, adequate scientific data is not available for PPV to be used without increasing the risk to firefighters. This fire research report details the experimental data from cold flow experiments, fuel load characterization experiments and full scale fire experiments. During the project it was identified that the positive pressure attack (PPA) and positive pressure ventilation (PPV) were often used interchangeably. For the purpose of this report they have been defined as PPA for when the fan is utilized prior to fire control and PPV for when the fan is used post fire control. The information from the full scale tests was reviewed with assistance from our technical panel of fire service experts to develop tactical considerations for the use of PPV fans in residential single family structures.


2019 ◽  
Author(s):  
Keith Stakes ◽  
◽  
Joseph Willi

Previous FSRI led research projects have focused on examining the fire environment with regards to current building construction methods, synthetic fuel loading, and best-practices in firefighting strategies and tactics. More than 50 experiments have been previously conducted utilizing furniture to produce vent-limited fire conditions, replicating the residential fire environment, and studying the methods of horizontal ventilation, vertical ventilation, and positive pressure attack. Tactical considerations generated from the research are intended to provide fire departments with information to evaluate their standard operating procedures and make improvements, if necessary, to increase the safety and effectiveness of firefighting crews. Unfortunately, there still exists a long standing disconnect between live-fire training and the fireground as evident by continued line of duty injury and death investigations that point directly to a lack of realistic yet safe training, which highlights a continued misunderstanding of fire dynamics within structures. The main objective of the Study of the Fire Service Training Environment: Safety, Fidelity, and Exposure is to evaluate training methods and fuel packages in several different structures commonly used across the fire service to provide and highlight considerations to increase both safety and fidelity. This report is focused on the evaluation of live-fire training in acquired structures. A full scale structure was constructed using a similar floor plan as in the research projects for horizontal ventilation, vertical ventilation, and positive pressure attack to provide a comparison between the modern fire environment and the training ground. The structure was instrumented which allowed for the quantification of fire behavior, the impact of various ventilation tactics, and provided the ability to directly compare these experiments with the previous research. Twelve full scale fire experiments were conducted within the test structure using two common training fuel packages: 1) pallets, and 2) pallets and oriented strand board (OSB). To compare the training fuels to modern furnishings, the experiments conducted were designed to replicate both fire and ventilation location as well as event timing to the previous research. Horizontal ventilation, vertical ventilation, and positive pressure attack methods were tested, examining the proximity of the vent location to the fire (near vs. far). Each ventilation configuration in this series was tested twice with one of the two training fuel loads. The quantification of the differences between modern furnishings and wood-based training fuel loads and the impact of different ventilation tactics is documented through a detailed comparison to the tactical fireground considerations from the previous research studies. The experiments were compared to identify how the type of fuel used in acquired structures impacts the safety and fidelity of live-fire training. The comparisons in this report characterized initial fire growth, the propensity for the fire to become ventilation limited, the fires response to ventilation, and peak thermal exposure to students and instructors. Comparisons examined components of both functional and physical fidelity. Video footage was used to assess the visual cues, a component of the fire environment that is often difficult to replicate in training due to fuel load restrictions. The thermal environment within the structure was compared between fuel packages with regards to the potential tenability for both students and instructors.


2013 ◽  
Author(s):  
Steve Kerber ◽  

There is a continued tragic loss of firefighter and civilian lives, as shown by fire statistics. One significant contributing factor is the lack of understanding of fire behavior in residential structures resulting from the use of ventilation as a firefighter practice on the fire ground. The changing dynamics of residential fires as a result of the changes in home construction materials, contents, size and geometry over the past 30 years compounds our lack of understanding of the effects of ventilation on fire behavior (Kerber S. , 2012). If used properly, ventilation improves visibility and reduces the chance of flashover or back draft. If a fire is not properly ventilated, it could result in an anticipated flashover, greatly reducing firefighter safety (Kerber S. , 2012). This fire research project developed empirical data from full-scale house fire experiments to examine vertical ventilation, suppression techniques and the resulting fire behavior. The purpose of this study was to improve firefighter knowledge of the effects of vertical ventilation and the impact of different suppression techniques. The experimental results may be used to develop tactical considerations outlining firefighting ventilation and suppression practices to reduce firefighter death and injury. This fire research project will further work from previous DHS AFG sponsored research (EMW-2008-FP-01774), which studied the impact of horizontal ventilation through doors and windows (Kerber S. , 2010).


2012 ◽  
Vol 49 (4) ◽  
pp. 857-889 ◽  
Author(s):  
Stephen Kerber

Abstract This paper describes experimental investigations on fire service ventilation practices in modern house geometries. Two houses were constructed inside a large fire facility. The first of two houses constructed was a one-story, 111.5 m2, 3 bedroom, 1 bathroom house with 8 total rooms. The second house was a two-story 297.3 m2, 4 bedroom, 2.5 bathroom house with 12 total rooms. The second house featured a modern open floor plan, two-story great room and open foyer. Fifteen experiments were conducted varying the ventilation locations and the number of ventilation openings. Ventilation scenarios included ventilating the front door only, opening the front door and a window near and remote from the seat of the fire, opening a window only and ventilating a higher opening in the two-story house. One scenario in each house was conducted in triplicate to examine repeatability. The results of these experiments examine potential occupant tenability and provide knowledge for the fire service for them to examine their horizontal ventilation standard operating procedures and training content. The fire dynamics resulting from ventilation practices such as ventilation near or remote from the seat of the fire and high versus low in relation to the fire are examined. Several other tactical considerations were developed utilizing the data from these experiments to provide specific examples of changes that can be adopted based on a departments current strategies and tactics. Such tactical considerations and a systems approach to fire service tactics should be investigated further.


2017 ◽  
Vol 20 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Bradley Plunkett ◽  
Andrew Duff ◽  
Ross Kingwell ◽  
David Feldman

The average size of Australian farms in scale and revenue are the globe’s largest. This scale is a result, in part, of low average rural population densities; development patterns in broadacre production; low levels of effective public policy transfers; a stable and suitable institutional setting suitable for corporate and other large scale investment; and low yields. It is also a factor of the natural variability of the country’s climatic systems which have contributed to the scale of extensive northern cattle production; this variability has implications for the pattern of ownership of broadacre and extensive production. Corporate ownership, tends to concentrate production aggregations at sufficient scale to offset its additional overheads in areas of relative climatic stability and to replicate these agroholding aggregations spatially to protect the stability of revenue flows. Family structures are more dominant in areas of greater climatic variability. Of interest is the impact that any increasing climatic variability (versus rapid changes in technology) may have upon this pattern.


Sign in / Sign up

Export Citation Format

Share Document