Multicasting Data Routing for Vehicular Ad hoc Network using Fog Computing

Author(s):  
Seema Gaba ◽  
◽  
Kavita . ◽  
Sahil Verma ◽  
Monica Sood ◽  
...  

A group of vehicles either mobile or stationery that is interconnected through a wireless network generate a vehicular ad hoc network (VANET). Providing comfort as well as safety to the drivers in vehicular scenarios is the main importance of VANETs. Since there is an increase in the number of autonomous vehicles, these networks are now being considered as an infrastructure for an intelligent transportation system. Fog computing can be provided low latent information sharing and more background knowledge by localizing one of the features. This research work is related to data aggregation in vehicular ad hoc networks. In this research work, the technique of multicasting will be proposed for the data aggregation in VANETs. The Network Simulator 2 is used to perform experiments and few performance measures are used for analysing the outcomes.

Author(s):  
Aparna N. Mahajan ◽  
Ramesh C. Poonia ◽  
Sunaina Sharma

: The Vehicular Ad-hoc network is the promising research area which makes it ‘Network on the wheel". VANET is a group of communication vehicles to transmit preferred information. The prime focus of the proposed research work is to explore the feasibility of VANETs for Highway traffic management over flyovers (NCR) and to analyze & compare possibility of reactive routing protocols for VANETs under study in NCR flyover scenario. The feasibility of vehicular ad-hoc networks based on live data for Rajiv Chowk on NH- 8 Scenario has been analyzed. The performance of On-demand routing protocols for vehicular Ad-hoc network is compared using VANETMobiSim 2.0 and NS -2.34.


2020 ◽  
Vol 9 (1) ◽  
pp. 1532-1535

The vehicular ad hoc network is the network in which vehicles can move from one location to another without help of driver. The vehicle ad hoc network has two type of communication which is vehicles to vehicle and vehicle to road side units. The internet of things is the technology in which source can transmit sensed information over the internet. This research work is based on the vehicle of internet things. In the vehicles of internet things, the vehicles are connected with each other through internet. The various techniques of data aggregation in vehicle of things are reviewed in this paper and analyzed in terms of certain parameters


2020 ◽  
Vol 17 (12) ◽  
pp. 5503-5508
Author(s):  
R. Rajasekar ◽  
P. Sivakumar

The increasing current advancement of digital technology is completely based on Internet of Things (IoT). The IoT is used to facilitate smart city traffic congestion through Vehicular Ad-Hoc Network (VANET). In the Smart city, multiplying the number of vehicles has brought focus on road safety precautions and communication between vehicles. It is a precise time to concentrate on the new advancement of modern applications and its related services towards the vehicular environments. The Manual traffic systems are not sufficient for the increasing modernization of the city. The VANET is a spontaneous Ad-Hoc network formed over vehicles wandering on the road. In this research work states that the overview of various IoT based routing methodologies and challenges towards the VANET routing through intelligent optimization. The Swarm based intelligent algorithms for Vehicular Ad-Hoc networks deals with latency, data throughput, data delivery cost and data delivery ratio of the intelligent system. Swarm intelligent algorithms are used for optimization of intelligent transport system. It is a collective behavioral system of nature inspired ant/bee activity.


Author(s):  
S. Sivagurunathan ◽  
V. Mohan ◽  
P. Subathra

A Vehicular Ad-Hoc Network, or VANET, is a form of Mobile Ad-Hoc Network to provide communications among nearby vehicles and between vehicles and nearby fixed equipments. Security has become a prime concern in providing communication between these vehicles. Unlike wired networks, the characteristics of Vehicular Ad Hoc Networks (VANETs) pose a number of non-trivial challenges to security design. In this paper, the authors present a threshold security mechanism with a mobility based Clustering for Open Inter Vehicle Communication Networks (COIN). Nodes that have a similar moving pattern are grouped into a cluster, and unlike other clustering algorithms, it takes the moving pattern of the vehicles into consideration with the driver’s intention. The stability of clusters is estimated based on relative mobility of cluster members. A threshold cryptographic scheme is employed on top of the clusters to protect routing information and data traffic. To ensure distributed trust in the clustered environment, the private key (k) is divided into n pieces in such a way that k is easily reconstructable from any p number of pieces.


2020 ◽  
pp. 768-775
Author(s):  
Pushpender Sarao ◽  

Vehicular ad-hoc networks is very popular research domain in which research work is going on at various aspects like routing the data without loss end-to-end. Routing in such networks is very tedious task due to frequently changing the position of vehicles location-wise. In this paper an intelligent model has been developed on the basis of adaptive neuro fuzzy system for OLSR routing protocol in VANET. The proposed model is designed based on input parameters average goodput and mac/phy-overhead. Based on these parameters, transmission power can be predicted. Triangular and Gaussian membership functions have been applied for designing the decision model. A comparison work also has been carried out for Gaussian, triangular functions and NS-3 based results. At the same time, the model is investigated by simulation work carried out on network simulator-3 (NS-3) platform.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chenguang He ◽  
Guanqiao Qu ◽  
Liang Ye ◽  
Shouming Wei

Recently, the research on the vehicular ad hoc network (VANET) has been paid more attention by researchers with the quick development of the autonomous driving technology. In the VANET, vehicles can communicate with everything through the route established by routing algorithms. However, the topology of the VANET changes fast because the vehicles move fast. Also, as the number of vehicles increases, the probability of data collision and the transmission latency will also increase when communicating. Therefore, the VANET needs a stable, low-latency, and efficient route for vehicles to communicate with each other. However, the existing routing algorithms are either unable to aggregate data or are not suitable for the large-size VANET. In this paper, we consider the vehicle attribute information comprehensively and cluster the vehicles on the road by using the cluster algorithm we propose. We dynamically select the cluster heads at each moment according to their attribute information. We consider all kinds of nodes in the network and the vehicle nodes will communicate with each other through the cluster heads under the two-level communicating algorithm we propose. Compared with the existing cluster routing algorithm, the algorithm we propose is much more suitable for the large-size VANET because the cluster heads do not need a gateway to help them communicate. In the simulation part, we set some real street scenes in Simulation of Urban Mobility (SUMO) and the vehicles can move by the traffic rules like in the real world, which is more suitable for the VANET. After analysing the communication performance in Network Simulator version 2 (NS2), we can get a conclusion that the algorithm proposed is superior to the traditional routing algorithm. The route established by the algorithm we propose is much more stable and efficient. And the latency is also lower than the former.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhuwei Wang ◽  
Yuehui Guo ◽  
Yu Gao ◽  
Chao Fang ◽  
Meng Li ◽  
...  

With the rapid developments of wireless communication and increasing number of connected vehicles, Vehicular Ad Hoc Networks (VANETs) enable cyberinteractions in the physical transportation system. Future networks require real-time control capability to support delay-sensitive application such as connected autonomous vehicles. In recent years, fog computing becomes an emerging technology to deal with the insufficiency in traditional cloud computing. In this paper, a fog-based distributed network control design is proposed toward connected and automated vehicle application. The proposed architecture combines VANETs with the new fog paradigm to enhance the connectivity and collaboration among distributed vehicles. A case study of connected cruise control (CCC) is introduced to demonstrate the efficiency of the proposed architecture and control design. Finally, we discuss some future research directions and open issues to be addressed.


Author(s):  
Shrirang Ambaji Kulkarni ◽  
G. Raghavendra Rao

Vehicular Ad Hoc Networks represent a specialized application of Mobile Ad Hoc Networks. Here the mobile nodes move in lanes and their mobility can be modeled based on realistic traffic scenarios. To meet the above challenge the goal of defining the mobility model for vehicular ad hoc network along with a realistic traffic pattern is an important research area. Vehicular mobility is characterized by acceleration, deceleration, possibility of different lanes and intelligent driving patterns. Also a modeling of traffic is necessary to evaluate a vehicular ad hoc network in a highway environment. The traffic model has to take into account the driver behavior in order to take decisions of when to overtake, change lanes, accelerate and decelerate. To overcome the limitation of traditional mobility models and mimic traffic models, many traffic model based simulators like CORSIM, PARAMICS and MOVE have been proposed. In this chapter we provide taxonomy of mobility models and analyze their implications. To study the impact of mobility model on routing protocol for vehicular motion of nodes we analyze the performance of mobility models with suitable metrics and study their correlation with routing protocol. We also discuss the fundamentals of traffic engineering and provide an insight into traffic dynamics with the Intelligent Driver Model along with its lane changing behavior.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rakesh Shrestha ◽  
Rojeena Bajracharya ◽  
Seung Yeob Nam

Vehicular ad hoc networks (VANETs) have been studied intensively due to their wide variety of applications and services, such as passenger safety, enhanced traffic efficiency, and infotainment. With the evolution of technology and sudden growth in the number of smart vehicles, traditional VANETs face several technical challenges in deployment and management due to less flexibility, scalability, poor connectivity, and inadequate intelligence. Cloud computing is considered a way to satisfy these requirements in VANETs. However, next-generation VANETs will have special requirements of autonomous vehicles with high mobility, low latency, real-time applications, and connectivity, which may not be resolved by conventional cloud computing. Hence, merging of fog computing with the conventional cloud for VANETs is discussed as a potential solution for several issues in current and future VANETs. In addition, fog computing can be enhanced by integrating Software-Defined Network (SDN), which provides flexibility, programmability, and global knowledge of the network. We present two example scenarios for timely dissemination of safety messages in future VANETs based on fog and a combination of fog and SDN. We also explained the issues that need to be resolved for the deployment of three different cloud-based approaches.


Sign in / Sign up

Export Citation Format

Share Document