scholarly journals Water use pattern of Pinus tabulaeformis in the semiarid region of Loess Plateau, China

2016 ◽  
Vol 25 (3) ◽  
pp. e077 ◽  
Author(s):  
Shengqi Jian ◽  
Xueli Zhang ◽  
Zening Wu ◽  
Caihong Hu

Aim of the study: We analyzed the water-use strategy of P. tabulaeformis and determine the relationships between environmental factors and transpiration rates in the P. tabulaeformis woodlands.Area of study: Loess Plateau region of Northwest China.Material and Methods: Sap flow density of the P. tabulaeformis trees was measured with Granier-type sensors. Stand transpiration was extrapolated from the sap flow measurements of individual trees using the following Granier equation.Main results: The mean sap flow rates of individual P. tabulaeformis trees ranged from 9 L day−1 to 54 L day−1. Photosynthetically active radiation and vapor pressure deficit were the dominant driving factors of transpiration when soil water content was sufficient (soil water content>16%), considering that soil water content is the primary factor of influencing transpiration at the driest month of the year. During the entire growing season, the maximum and minimum daily stand transpiration rates were 2.93 and 0.78 mm day−1, respectively. The mean stand transpiration rate was 1.9 mm day−1, and the total stand transpiration from May to September was 294.1 mm.Research highlights: This study can serve as a basis for detailed analyses of the water physiology and growth of P. tabulaeformis plantation trees for the later application of a climate-driven process model.Keywords: Sap flow; stand transpiration; environmental factor; Pinus tabulaeformis; Loess Plateau.

2019 ◽  
Vol 67 (3) ◽  
pp. 271-279
Author(s):  
Shengqi Jian ◽  
Zening Wu ◽  
Caihong Hu

Abstract Tree transpiration plays a determining role in the water balance of forest stands and in seepage water yields from forested catchments, especially in arid and semiarid regions where climatic conditions are dry with severe water shortage, forestry development is limited by water availability. To clarify the response of water use to climatic conditions, sap flow was monitored by heat pulse velocity method from May to September, 2014, in a 40–year–old Pinus tabulaeformis Carr. plantation forest stands in the semiarid Loess Plateau region of Northwest China. We extrapolated the measurements of water use by individual plants to determine the area–averaged transpiration of the woodlands. The method used for the extrapolation assumes that the transpiration of a tree was proportional to its sapwood area. Stand transpiration was mainly controlled by photosynthetically active radiation and vapor pressure deficit, whereas soil moisture had more influence on monthly change in stand transpiration. The mean sap flow rates for individual P. tabulaeformis trees ranged from 9 to 54 L d−1. During the study period, the mean daily stand transpiration was 1.9 mm day−1 (maximum 2.9 and minimum 0.8 mm day−1) and total stand transpiration from May to September was 294.1 mm, representing 76% of the incoming precipitation over this period. Similar results were found when comparing transpiration estimated with sap flow measurements to the Penman–Monteith method (relative error: 16%), indicating that the scaling procedure can be used to provide reliable estimates of stand transpiration. These results suggested that P. tabulaeformis is highly effective at utilizing scarce water resources in semiarid environments.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 105 ◽  
Author(s):  
Rong Li ◽  
Xianqing Hou ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Baoping Yang

Precipitation is the major factor limiting crop growth in the semi-arid Loess Plateau region of China. Ridge-and-furrow rainfall harvesting systems (RFRHS) with mulches are used to increase water availability to crops, thereby improving and stabilising agricultural production in the semi-arid region of China. We conducted a field experiment from 2007 to 2010 in the Weibei Highlands of China, to determine the influence of RFRHS with different mulching patterns on soil water content, temperature, water-use efficiency, and maize yield (Zea mays L.). Ridges were covered with standard plastic film in all RFRHS treatments, while different furrow treatments were mulched with standard plastic film (PP), biodegradable film (PB), maize straw (PS), or liquid film (PL), or left uncovered (P). A conventional flat treatment without mulching was used as the control. In the early stage of maize growth, the topsoil temperature (5–20 cm) under PP and PB was significantly (P < 0.05) higher than under the control, whereas the soil temperature under PS was significantly (P < 0.05) lower than under the control. Treatments PP, PB, and PS also significantly improved soil water content during early growth stages. There was no significant difference in soil water content between PS and the control during middle and late growth stages. However, the soil water content in the deep soil layers with PP and PB was less than that of the control. Soil temperature and soil water content of PL and P were slightly higher than the control during the whole growing season. Higher maize yield and water-use efficiency was found with PP, PB, and PS. Compared with the control, the 4-year average maize yield with PP, PB, and PS was significantly (P < 0.05) increased, by 35, 35, and 34%, while the average water-use efficiency increased by 30, 31, and 29%, respectively. Net income was highest with PS, followed by PB, where the 4-year average net income increased by 2779 and 2752 Chinese yuan (CNY) ha–1, respectively, compared with the control. Soil water and temperature conditions were improved, while the maize yield and net income were increased, when ridges were covered with standard plastic film and the furrows were mulched with either biodegradable film or straw. Therefore, these two treatments are considered most efficient for maize production in the drought-prone, semi-humid region of the Loess Plateau, China.


2015 ◽  
Vol 45 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Shengqi Jian ◽  
Chuanyan Zhao ◽  
Shumin Fang ◽  
Kai Yu

Understanding the water-use strategy of trees and shrubs is crucial for developing effective vegetation restoration in regions that are subjected to water scarcity. We studied the water-use strategy of Caragana korshinskii Kom. and Hippophae rhamnoides L. in the Chinese Loess Plateau to evaluate the adaption strategies of these two shrubs, which are both commonly used in the restoration programs in this region. We extrapolated the measurements of water use by individual plants to determine the area-averaged transpiration of the shrublands. There was a good agreement between transpiration estimated by the Penman–Monteith method and by the sap-flow method, which suggests that that the sap-flow method can provide reliable estimates of shrub transpiration at the stand level. Stand transpiration was mainly influenced by environmental factors such as photosynthetically active radiation, vapor pressure deficit, and soil water content. When the soil water content was sufficient, photosynthetically active radiation and vapor pressure deficit were the dominant factors; however, soil water content was the primary factor under low soil moisture levels. Stand transpiration ranged from 0.52 to 4.21 mm·day−1 with a mean of 1.42 mm·day−1 for C. korshinskii and ranged from 0.57 to 3.99 mm·day−1 with a mean of 1.94 mm·day−1 for H. rhamnoides. During the experimental period (from June to September 2013), cumulative transpirations were 173.4 and 236.6 mm for C. korshinskii and H. rhamnoides, respectively, which accounted for up to 88.2% of the rainfall registered during this period. We calculated the soil water balance and measured the water potential of stems and leaves for C. korshinskii and H. rhamnoides. Hippophae rhamnoides had a lower net soil water storage, indicating that it consumed more soil water than C. korshinskii. There were some negative water potential drops between stems and leaves for H. rhamnoides, suggesting the lack of a safety margin for H. rhamnoides. Our results indicated that C. korshinskii is more suitable for afforestation than H. rhamnoides in the Loess Plateau.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


2005 ◽  
Vol 60 (5) ◽  
pp. 1013-1016
Author(s):  
Reiji KIMURA ◽  
Yuanbo LIU ◽  
Naru TAKAYAMA ◽  
Makio KAMICHIKA ◽  
Nobuhiro MATSUOKA ◽  
...  

The conservation of water resources through their optimal use is a compulsory for countries with water shortages in the arid and semi-arid regions, and it should be in an environmentally friendly manner to avoid the serious consequences of the use of environmentally harmful substances, the implications of which are currently evident from climate change, pollution of water bodies, soils, etc. Since Egypt is one of those countries suffering from water scarcity and uses about 82.5 percent of its water consumption in agriculture, according to data of the Ministry of Irrigation in 2010, so this research is focusing on the use of new methods to increase the efficiency of irrigation water, to achieve high productivity of agricultural crops with less water use that will certainly help to alleviate or solve the water scarcity issue. The study used a physical based model, to simulate the methods used to increase sand soil properties to ensure larger water retention index. Within this work, soil have been sampled from different areas, to simulate the behavior of arid lands, under different water retention techniques. Soil was exposed to different techniques, as it was mixed with soil additives in different quantities and different types. Physical barriers of cohesive soil and polyethylene sheets were used in addition to studying the effect of mulch on water storage capacity in noncohesive soil. Water retention have been measured using the direct method of determination soil water content by oven drying and the volumetric water content (𝞱v ) with time graphs have been plotted in groups, as well as the cultivated plants have been monitored as to measure the influence on plants growing and irrigation efficiency. And the experiment showed that the use of rice straw (RS) and wheat straw (WS) in the powder condition have a significant effect in increasing in the soil water content and even to the plant growth, the WS obtained 𝞱v values approaching the loam soil at times and slightly less in the case of RS, when the percentage of RC and WS was 30% to the sandy soil volume/volume (v/v). Also the use of mulch of RS showed a noticeable increase in 𝞱v and significant improvement of plant growth to that without mulch. These proven technologies can be used in sandy land targeted for reclamation to reduce water use in agriculture.


2001 ◽  
Vol 50 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Karina M Sakalauskas ◽  
José L Costa ◽  
Pedro Laterra ◽  
Liliana Hidalgo ◽  
Luis A.N Aguirrezabal

2020 ◽  
Author(s):  
Yu Zhang ◽  
Xiaoyan Li ◽  
Wei Li ◽  
Weiwei Fang ◽  
Fangzhong Shi

&lt;p&gt;Shrub is the main vegetation type for vegetation restoration in the Loess Plateau, which plays an important role in the regional ecosystem restoration. Study on the relationships between vegetation and soil water of typical shrub ecosystems are significant for the restoration and reconstruction of ecosystems in the Loess Plateau. Three typical shrub (&lt;em&gt;Hippophae rhamnoides&lt;/em&gt; Linn., &lt;em&gt;Spiraea pubescens&lt;/em&gt; Turcz., and &lt;em&gt;Caragana korshinskii&lt;/em&gt; Kom.) ecosystems were chosen in the Loess Plateau. Field experiments were conducted to investigate the factors that influencing the processes of rainfall interception and root uptake of typical shrubs. S-Biome-BGC model was established based on the Biome-BGC model by developing the rainfall interception and soil water movement sub-models. The model was calibrated and verified using field data. The calibrated S-Biome-BGC model was used to simulate the characteristics of leaf area index (&lt;em&gt;LAI&lt;/em&gt;), net primary productivity (&lt;em&gt;NPP&lt;/em&gt;), soil water content and the interactions among them for the shrub ecosystems along the precipitation gradients in the Loess Plateau, respectively. The results showed that the predictions of the S-Biome-BGC model for soil water content and&lt;em&gt; LAI&lt;/em&gt; of typical shrub ecosystems in Loess Plateau were significantly more accurate than that of Biome-BGC model. The simulated &lt;em&gt;RMSE&lt;/em&gt; of soil water content decreased from 0.040~0.130 cm&lt;sup&gt;3&lt;/sup&gt; cm&lt;sup&gt;-3&lt;/sup&gt; to 0.026~0.035 cm&lt;sup&gt;3&lt;/sup&gt; cm&lt;sup&gt;-3&lt;/sup&gt;, and the simulated &lt;em&gt;RMSE&lt;/em&gt; of&lt;em&gt; LAI&lt;/em&gt; decreased from 0.37~0.70 m&lt;sup&gt;2&lt;/sup&gt; m&lt;sup&gt;-2&lt;/sup&gt; to 0.35~0.37 m&lt;sup&gt;2&lt;/sup&gt; m&lt;sup&gt;-2&lt;/sup&gt;. Therefore, the S-Biome-BGC model can reflect the interaction between plant growth and soil water content in the shrub ecosystems of the Loess Plateau. The S-Biome-BGC model simulation for &lt;em&gt;LAI&lt;/em&gt;,&lt;em&gt; NPP&lt;/em&gt; and soil water content of the three typical shrubs were significantly different along the precipitation gradients, and increased with annual precipitation together. However, different &lt;em&gt;LAI&lt;/em&gt;, &lt;em&gt;NPP&lt;/em&gt; and soil water correlations were found under different precipitation gradients.&lt;em&gt; LAI&lt;/em&gt; and&lt;em&gt; NPP&lt;/em&gt; have significant positive correlations with soil water content in the areas where the annual precipitation is above 460~500 mm that could afford the shrubs growth. The results of the study provide a re-vegetation threshold to guide future re-vegetation activities in the Loess Plateau.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document