scholarly journals Genetic diversity of the Northern Morocco goat population assessed with microsatellite markers

2017 ◽  
Vol 15 (3) ◽  
pp. e0404 ◽  
Author(s):  
Najat El Moutchou ◽  
Ana M. González-Martínez ◽  
Mouad Chentouf ◽  
Khalid Lairini ◽  
Evangelina Rodero

The main goal of this work was to study the genetic diversity of the Northern Morocco goat population through the analysis of 19 microsatellites in 144 animals from 61 herds. To detect a possible population structure, three distinct geographic subpopulations were characterized as a function of climate and environmental influences. Most of the markers were highly polymorphic, and the results revealed considerable genetic variation across the studied loci. A total of 204 alleles were detected, with an average number of 10.7 per locus. The PIC average was 0.728, and four microsatellites showed a significant deviation (p< 0.05) from Hardy-Weinberg Equilibrium. Analysis of molecular variance (AMOVA) indicated that only 0.5% of the variation corresponded to differences among subpopulations, and 99.5% corresponded to differences among individuals. Factorial correspondence analysis showed intense admixtures across the putative subpopulations, and the subdivision related to geographical or environmental adaptation was undetectable. The Northern Morocco goat population presented high genetic diversity and a lack of population structure. The main reason for these findings is the absence of the breed concept (reproductively closed population), resulting in uncontrolled crossbreeding with exotic breeds and other local goats.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yeirme Jaimes ◽  
Carolina Gonzalez ◽  
Jairo Rojas ◽  
Jessica Johana Rivera ◽  
Christian Cilas ◽  
...  

The witches’ broom (Moniliophthora perniciosa) is considered as one of the main threats for cacao production and, consequently, for chocolate production worldwide.. In this work, the genetic diversity and population structure of M. perniciosa were analyzed for 59 isolates collected in five departments of Colombia and using 10 microsatellite markers. Analyses revealed 35 multilocus genotypes (MLGs) and clonal populations structure according to linkage disequilibrium analysis. One of the objectives of this study was to determine whether populations were differentiated by geographic origin or T. cacao host genotype. Analysis of molecular variance, Discriminant Analysis of Principal Components (DAPC) and Bruvo genetic distance suggested that the genetic structure was driven by geographic origin and not by T. cacao genotype. The results of this study were consistent with previous findings obtained in other cocoa producing countries. Important insights were discussed regarding the dispersal patterns of the pathogen in Colombia and the genetic change of its populations due to different environmental conditions.


Genome ◽  
2003 ◽  
Vol 46 (3) ◽  
pp. 404-410 ◽  
Author(s):  
V Díaz ◽  
E Ferrer

Primers based on conserved motifs of plant resistance genes were used to generate multilocus molecular markers — referred to as resistance gene analog polymorphisms (RGAPs) — in Pinus oocarpa subsp. oocarpa. Ten populations from three regions of Nicaragua were analyzed with 53 RGAPs. The aim of this study was to determine the levels of within- and between-population diversity with this kind of marker, and to compare estimates with previously obtained results based on RAPD and AFLP. All populations showed high levels of diversity. GST values and the analysis of molecular variance (AMOVA) revealed most variation to be within populations, although significant differences between populations and regions were also detected. This pattern of genetic diversity was similar to that obtained for RAPD and AFLP, which suggests that variation at RGAP loci as detected in this work is mostly influence by non-selective forces.Key words: resistance gene analogs, molecular markers, genetic diversity, population structure, Pinus oocarpa.


2016 ◽  
Vol 19 (4) ◽  
pp. 275-283 ◽  
Author(s):  
Host Antony David Rajendran ◽  
Ramakrishnan Muthusamy ◽  
Antony Caesar Stanislaus ◽  
Thirugnanasambantham Krishnaraj ◽  
Sivasankaran Kuppusamy ◽  
...  

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Changjun Ding ◽  
Xiaohua Su ◽  
Qinjun Huang

Abstract Background Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. Results In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. Conclusions P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Moein Khojasteh ◽  
S. Mohsen Taghavi ◽  
Pejman Khodaygan ◽  
Habiballah Hamzehzarghani ◽  
Gongyou Chen ◽  
...  

ABSTRACT This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding’s grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding’s grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen. IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads—namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens—have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


2011 ◽  
Vol 11 (3) ◽  
pp. 216-223 ◽  
Author(s):  
Liene Rocha Picanço Gomes ◽  
Maria Teresa Gomes Lopes ◽  
Jania Lilia da Silva Bentes ◽  
Willian Silva Barros ◽  
Pedro de Queiroz Costa Neto ◽  
...  

This study aimed to characterize the genetic diversity of buriti populations by AFLP (Amplified Fragment Length Polymorphism) markers. The analysis was performed in four populations used by traditional communities in the state of Amazonia (Bom Jesus do Anamã, Lauro Sodré, Santa Luzia do Buiçuzinho, and Esperança II). From each population 30 plants were randomly selected. To obtain the markers four primer combinations were used. The percentage of polymorphic loci was estimated, the molecular variance among and within populations analyzed and a dendrogram constructed. The primers detected 339 polymorphic loci ranging from 81.1 % to 91.1 % among populations. Analysis of molecular variance attributed 77.18 % to variation within and 22.8 % to variation between populations. The dendrogram indicated the formation of two groups, showing that the populations of Bom Jesus do Anamã and Lauro Sodré are genetically most similar and thet the genetic and geographical distances are not correlated.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne C. Latreille ◽  
Pascal Milesi ◽  
Hélène Magalon ◽  
Patrick Mavingui ◽  
Célestine M. Atyame

Abstract Background In recent years, the Asian tiger mosquito Aedes albopictus has emerged as a species of major medical concern following its global expansion and involvement in many arbovirus outbreaks. On Réunion Island, Ae. albopictus was responsible for a large chikungunya outbreak in 2005–2006 and more recently an epidemic of dengue which began at the end of 2017 and is still ongoing at the time of writing. This dengue epidemic has seen a high number of human cases in south and west coastal regions, while few cases have been reported in the north and east of the island. To better understand the role of mosquito populations in such spatial patterns of dengue virus transmission in Réunion Island, we examined the genetic diversity and population structure of Ae. albopictus sampled across the island. Results Between November 2016 and March 2017, a total of 564 mosquitoes were collected from 19 locations in three main climatic regions (West, East and Center) of Réunion Island and were genotyped using 16 microsatellite loci. A high genetic diversity was observed with 2–15 alleles per locus and the average number of alleles per population varying between 4.70–5.90. Almost all FIS values were significantly positive and correlated to individual relatedness within populations using a hierarchical clustering approach based on principal components analyses (HCPC). However, the largest part of genetic variance was among individuals within populations (97%) while only 3% of genetic variance was observed among populations within regions. Therefore, no distinguishable population structure or isolation by distance was evidenced, suggesting high rates of gene flow at the island scale. Conclusions Our results show high genetic diversity but no genetic structure of Ae. albopictus populations in Réunion Island thus reflecting frequent movements of mosquitoes between populations probably due to human activity. These data should help in the understanding of Ae. albopictus vector capacity and the design of effective mosquito control strategies.


2020 ◽  
Author(s):  
Yibing Zeng ◽  
Tao Xiong ◽  
Bei Liu ◽  
Elma Carstens ◽  
Xiangling Chen ◽  
...  

Phyllosticta citriasiana is the causal agent of citrus tan spot, an important pomelo disease in Asia. At present, there is little or no information on the epidemiology or population structure of P. citriasiana. Using simple sequence repeat (SSR) markers, 94 isolates obtained from three pomelo production regions in southern/southeastern China were analyzed. The analyses showed high genetic diversity in each of the three geographic populations. A STRUCTURE analysis revealed two genetic clusters among the 94 isolates, one geographic population was dominated by genotypes in one cluster while the other two geographic populations were dominated by genotypes of the second cluster. P. citriasiana has a heterothallic mating system with two idiomorphs, MAT1-1 and MAT1-2. Analyses using mating type-specific primers revealed that both mating types were present in all three geographic populations, and in all three populations the mating type ratios were in equilibrium. Although the sexual stage of the fungus has not been discovered yet, analyses of allelic associations indicated evidence for sexual and asexual reproduction within and among populations. Despite the observed genetic differentiation among the three geographic populations, evidence for long-distance gene flow was found.


Sign in / Sign up

Export Citation Format

Share Document