scholarly journals Screening of transgenic maize using near infrared spectroscopy and chemometric techniques

2018 ◽  
Vol 16 (2) ◽  
pp. e0203 ◽  
Author(s):  
Xuping Feng ◽  
Haijun Yin ◽  
Chu Zhang ◽  
Cheng Peng ◽  
Yong He

The applicability of near infrared (NIR) spectroscopy combined with chemometrics was examined to develop fast, low-cost and non-destructive spectroscopic methods for classification of transgenic maize plants. The transgenic maize plants containing both cry1Ab/cry2Aj-G10evo proteins and their non-transgenic parent were measured in the NIR diffuse reflectance mode with the spectral range of 700–1900 nm. Three variable selection algorithms, including weighted regression coefficients, principal component analysis -loadings and second derivatives were used to extract sensitive wavelengths that contributed the most discrimination information for these genotypes. Five classification methods, including K-nearest neighbor, Soft Independent Modeling of Class Analogy, Naive Bayes Classifier, Extreme Learning Machine (ELM) and Radial Basis Function Neural Network were used to build discrimination models based on the preprocessed full spectra and sensitive wavelengths. The results demonstrated that ELM had the best performance of all methods, even though the model’s recognition ability decreased as the variables in the training of neural networks were reduced by using only the sensitive wavelengths. The ELM model calculated on the calibration set showed classification rates of 100% based on the full spectrum and 90.83% based on sensitive wavelengths. The NIR spectroscopy combined with chemometrics offers a powerful tool for evaluating large number of samples from maize hybrid performance trials and breeding programs.

2012 ◽  
Vol 503-504 ◽  
pp. 1601-1604 ◽  
Author(s):  
Jing Ming Ning ◽  
Sheng Peng Wang ◽  
Zheng Zhu Zhang ◽  
Xiao Chun Wan

Near-infrared (NIR) spectroscopy, combined with pattern recognition, was applied in this study for the rapid identification of Black tea from different origins.The K-Nearest Neighbor model recognition method was used for the establishment of a tea origin recognition model, which involved optimization of the principal component factors (PCs) and the identification rate using a cross-validation method. The experimental results showed that, after standard normal variant spectral preprocessing, an optimized model was obtained when the PCs were equal to three, with the cross-validation recognition rate and the predicted recognition rate reaching 98.1% and 93.3%, respectively.


Author(s):  
Zhu Siyu ◽  
He Chongnan ◽  
Song Mingjuan ◽  
Li Linna

In response to the frequent counterfeiting of Wuchang rice in the market, an effective method to identify brand rice is proposed. Taking the near-infrared spectroscopy data of a total of 373 grains of rice from the four origins (Wuchang, Shangzhi, Yanshou, and Fangzheng) as the observations, kernel principal component analysis(KPCA) was employed to reduce the dimensionality, and Fisher discriminant analysis(FDA) and k-nearest neighbor algorithm (KNN) were used to identify brand rice respectively. The effects of the two recognition methods are very good, and that of KNN is relatively better. Howerver the shortcomings of KNN are obvious. For instance, it has only one test dimension and its test of samples is not delicate enough. In order to further improve the recognition accuracy, fuzzy k-nearest neighbor set is defined and fuzzy probability theory is employed to get a new recognition method –Two-Parameter KNN discrimination method. Compared with KNN algorithm, this method increases the examination dimension. It not only examines the proportion of the number of samples in each pattern class in the k-nearest neighbor set, but also examines the degree of similarity between the center of each pattern class and the sample to be identified. Therefore, the recognition process is more delicate and the recognition accuracy is higher. In the identification of brand rice, the discriminant accuracy of Two-Parameter KNN algorithm is significantly higher than that of FDA and that of KNN algorithm.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Chao Tan ◽  
Zan Lin

Black rice is an important rice species in Southeast Asia. It is a common phenomenon to pass low-priced black rice off as high-priced ones for economic benefit, especially in some remote towns. There is increasing need for the development of fast, easy-to-use, and low-cost analytical methods for authenticity detection. The feasibility to utilize near-infrared (NIR) spectroscopy and support vector data description (SVDD) for such a goal is explored. Principal component analysis (PCA) is used for exploratory analysis and feature extraction. Another two data description methods, i.e., k-nearest neighbor data description (KNNDD) and GAUSS method, are used as the reference. A total of 142 samples from three brands were collected for spectral analysis. Each time, the samples of a brand serve as the target class whereas other samples serve as the outlier class. Based on both the first two principal components (PCs) and original variables, three types of data descriptions were constructed. On average, the optimized SVDD model achieves acceptable performance, i.e., a specificity of 100% and a sensitivity of 94.2% on the independent test set with tight boundary. It indicates that SVDD combined with NIR is feasible and effective for authenticity detection of black rice.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yinglin Yang ◽  
Xin Zhang ◽  
Jianwei Yin ◽  
Xiangyang Yu

The classification of plastic waste before recycling is of great significance to achieve effective recycling. In order to achieve rapid, nondestructive, and on-site detection, a portable near-infrared spectrometer was used in this study to obtain the diffuse reflectance spectrum for both standard and commercial plastics made by ABS, PC, PE, PET, PP, PS, and PVC. After applying a series of pretreatments, the principal component analysis (PCA) was used to analyze the cluster trend. K-nearest neighbor (KNN), support vector machine (SVM), and back propagation neural network (BPNN) classification models were developed and evaluated, respectively. The result showed that different plastics could be well separated in top three principal components space after pretreatment, and the classification models performed excellent classification results and high generalization capability. This study indicated that the portable NIR spectrometer, integrated with chemometrics, could achieve excellent performance and has great potential in the field of commercial plastic identification.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Lin Mo ◽  
Tong Wu ◽  
Chao Tan

Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues.


2016 ◽  
Vol 99 (2) ◽  
pp. 360-363 ◽  
Author(s):  
Prashant D Ingle ◽  
Roney Christian ◽  
Piyush Purohit ◽  
Veronica Zarraga ◽  
Erica Handley ◽  
...  

Abstract Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22–90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85–88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Caihong Li ◽  
Lingling Li ◽  
Yuan Wu ◽  
Min Lu ◽  
Yi Yang ◽  
...  

Near-infrared (NIR) spectra of apple samples were submitted in this paper to principal component analysis (PCA) and successive projections algorithm (SPA) to conduct variable selection. Three pattern recognition methods, backpropagation neural network (BPNN), support vector machine (SVM), and extreme learning machine (ELM), were applied to establish models for distinguishing apples of different varieties and geographical origins. Experimental results show that ELM models performed better on identifying apple variety and geographical origin than others. Especially, the SPA-ELM model could reach 98.33% identification accuracy on the calibration set and 96.67% on the prediction set. This study suggests that it is feasible to identify apple variety and cultivation region by using NIR spectroscopy.


Author(s):  
D. James ◽  
A. Collin ◽  
A. Mury ◽  
M. Letard

Abstract. Ecosystems must now cope with climate change such as rising sea levels. These major changes have a direct impact on the coastal fringe. However, in recent years, coastal ecosystems such as saltmarshes have proven their adaptive capacity. Unmanned Aerial Vehicles (UAV) are an inexpensive and easily deployable alternative which offer us the possibility to monitor these geomorphological and ecological systems, have been perfected over the years, making it possible to achieve high or even very high (VH) spectral and spatial resolution. Detection of changes at VH temporal and spatial resolution such as coastline evolution or seasonal monitoring of plant communities is facilitated. The red-green-blue (RGB) camera is the basic equipment of low-cost UAVs. Many studies have demonstrated the interest of infrared sensors for vegetation or water detection. In this original study, a pansharpening method has been developed to generate a red-edge (RE) and near infrared channel based on the VH resolution of RGB. Out of the three different pansharpening algorithms tested, Gram-Schmidt showed correlation (0.61 and 0.63 for RE and NIR channels respectively), followed by nearest neighbor diffusion and finally, principal component spectral pansharpening. The maximum likelihood, support vector machine and convolutional neural network classifiers were used to discriminate the main objects of the study area. The classification results revealed that at the classifier scale the ML outperforms the others with an overall accuracy of 80.75%. At the spectral band scale, the RE obtains the best performances with 80.04% of OA with ML and 78.34% of OA with SVM.


2014 ◽  
Vol 38 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Artur Gil ◽  
Qian Yu ◽  
Mohamed Abadi ◽  
Helena Calado

This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.


Sign in / Sign up

Export Citation Format

Share Document