scholarly journals Near-Infrared Spectroscopy as a Diagnostic Tool for Distinguishing between Normal and Malignant Colorectal Tissues

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Lin Mo ◽  
Tong Wu ◽  
Chao Tan

Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues.

2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Lijun Yao ◽  
Weiqun Xu ◽  
Tao Pan ◽  
Jiemei Chen

The moving-window bis-correlation coefficients (MW-BiCC) was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and [Formula: see text]-thalassemia with visible and near-infrared (Vis–NIR) spectroscopy. The well-performed moving-window principal component analysis linear discriminant analysis (MW-PCA–LDA) was also conducted for comparison. A total of 306 transgenic (positive) and 150 nontransgenic (negative) leave samples of sugarcane were collected and divided to calibration, prediction, and validation. The diffuse reflection spectra were corrected using Savitzky–Golay (SG) smoothing with first-order derivative ([Formula: see text]), third-degree polynomial ([Formula: see text]) and 25 smoothing points ([Formula: see text]). The selected waveband was 736–1054[Formula: see text]nm with MW-BiCC, and the positive and negative validation recognition rates ([Formula: see text]_REC[Formula: see text], [Formula: see text]_REC[Formula: see text] were 100%, 98.0%, which achieved the same effect as MW-PCA–LDA. Another example, the 93 [Formula: see text]-thalassemia (positive) and 148 nonthalassemia (negative) of human hemolytic samples were collected. The transmission spectra were corrected using SG smoothing with [Formula: see text], [Formula: see text] and [Formula: see text]. Using MW-BiCC, many best wavebands were selected (e.g., 1116–1146, 1794–1848 and 2284–2342[Formula: see text]nm). The [Formula: see text]_REC[Formula: see text] and [Formula: see text]_REC[Formula: see text] were both 100%, which achieved the same effect as MW-PCA–LDA. Importantly, the BiCC only required calculating correlation coefficients between the spectrum of prediction sample and the average spectra of two types of calibration samples. Thus, BiCC was very simple in algorithm, and expected to obtain more applications. The results first confirmed the feasibility of distinguishing [Formula: see text]-thalassemia and normal control samples by NIR spectroscopy, and provided a promising simple tool for large population thalassemia screening.


2005 ◽  
Vol 13 (2) ◽  
pp. 63-68 ◽  
Author(s):  
E. Corbella ◽  
D. Cozzolino

This study reports the use of visible (vis) and near infrared (NIR) spectroscopy as a tool to classify honey samples from Uruguay, according to their floral origin. Classification models were developed using principal component analysis, discriminant partial least squares (DPLS) regression and linear discriminant analysis (LDA). Honey samples ( n = 50) from two floral origins, namely Eucalyptus spp. and pasture, were split randomly into even calibration ( n = 25) and validation sets ( n = 25). Both LDA and DPLS models correctly classified, on average, more than 75% of the honey samples belonging to pasture and more than 85% of the honey samples belonging to Eucalyptus spp. These results showed that vis-NIR might be a suitable and alternative method that can easily be implemented by both the industry and retailers to classify samples according their floral origin. Vis-NIR analysis requires little sample preparation and is rapid. However, the relatively limited number of samples involved in the present work led us to be cautious in terms of extrapolating the results of this work to other floral types.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 450 ◽  
Author(s):  
Annalisa De Girolamo ◽  
Marina Cortese ◽  
Salvatore Cervellieri ◽  
Vincenzo Lippolis ◽  
Michelangelo Pascale ◽  
...  

Fourier transform near infrared (FT-NIR) spectroscopy, in combination with principal component-linear discriminant analysis (PC-LDA), was used for tracing the geographical origin of durum wheat samples. The classification model PC-LDA was applied to discriminate durum wheat samples originating from Northern, Central, and Southern Italy (n = 181), and to differentiate Italian durum wheat samples from those cultivated in other countries across the world (n = 134). Developed models were validated on a separated set of wheat samples. Different pre-treatments of spectral data and different spectral regions were selected and compared in terms of overall discrimination (OD) rates obtained in validation. The LDA models were able to correctly discriminate durum Italian wheat samples according to their geographical origin (i.e., North, Central, and South) with OD rates of up of 96.7%. Better results were obtained when LDA models were applied to the discrimination of Italian durum wheat samples from those originating from other countries across the world, having OD rates of up to 100%. The excellent results obtained herein clearly indicate the potential of FT-NIR spectroscopy to be used for the discrimination of durum wheat samples according to their geographical origin.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1683-1689 ◽  
Author(s):  
Sindhuja Sankaran ◽  
Reza Ehsani ◽  
Sharon A. Inch ◽  
Randy C. Ploetz

Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different.


2015 ◽  
Vol 39 (6) ◽  
pp. 2856-2865 ◽  
Author(s):  
Yara Gurgel Dall' Acqua ◽  
Luis Carlos Cunha Júnior ◽  
Viviani Nardini ◽  
Valquira Garcia Lopes ◽  
José Dalton da Cruz Pessoa ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5634
Author(s):  
Eunsoo Park ◽  
Yun-Soo Kim ◽  
Mohammad Kamran Omari ◽  
Hyun-Kwon Suh ◽  
Mohammad Akbar Faqeerzada ◽  
...  

Panax ginseng has been used as a traditional medicine to strengthen human health for centuries. Over the last decade, significant agronomical progress has been made in the development of elite ginseng cultivars, increasing their production and quality. However, as one of the significant environmental factors, heat stress remains a challenge and poses a significant threat to ginseng plants’ growth and sustainable production. This study was conducted to investigate the phenotype of ginseng leaves under heat stress using hyperspectral imaging (HSI). A visible/near-infrared (Vis/NIR) and short-wave infrared (SWIR) HSI system were used to acquire hyperspectral images for normal and heat stress-exposed plants, showing their susceptibility (Chunpoong) and resistibility (Sunmyoung and Sunil). The acquired hyperspectral images were analyzed using the partial least squares-discriminant analysis (PLS-DA) technique, combining the variable importance in projection and successive projection algorithm methods. The correlation of each group was verified using linear discriminant analysis. The developed models showed 12 bands over 79.2% accuracy in Vis/NIR and 18 bands with over 98.9% accuracy at SWIR in validation data. The constructed beta-coefficient allowed the observation of the key wavebands and peaks linked to the chlorophyll, nitrogen, fatty acid, sugar and protein content regions, which differentiated normal and stressed plants. This result shows that the HSI with the PLS-DA technique significantly differentiated between the heat-stressed susceptibility and resistibility of ginseng plants with high accuracy.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1551
Author(s):  
Annalisa De Girolamo ◽  
Salvatore Cervellieri ◽  
Erminia Mancini ◽  
Michelangelo Pascale ◽  
Antonio Francesco Logrieco ◽  
...  

Italy is the country with the largest durum wheat pasta production and consumption. The mandatory labelling for pasta indicating the country of origin of wheat has made consumers more aware about the consumed pasta products and is influencing their choice towards 100% Italian wheat pasta. This aspect highlights the need to promote the use of domestic wheat as well as to develop rapid methodologies for the authentication of pasta. A rapid, inexpensive, and easy-to-use method based on infrared spectroscopy was developed and validated for authenticating pasta made with 100% Italian durum wheat. The study was conducted on pasta marketed in Italy and made with durum wheat cultivated in Italy (n = 176 samples) and on pasta made with mixtures of wheat cultivated in Italy and/or abroad (n = 185 samples). Pasta samples were analyzed by Fourier transform-near infrared (FT-NIR) spectroscopy coupled with supervised classification models. The good performance results of the validation set (sensitivity of 95%, specificity and accuracy of 94%) obtained using principal component-linear discriminant analysis (PC-LDA) clearly demonstrated the high prediction capability of this method and its suitability for authenticating 100% Italian durum wheat pasta. This output is of great interest for both producers of Italian pasta pointing toward authentication purposes of their products and consumer associations aimed to preserve and promote the typicity of Italian products.


Sign in / Sign up

Export Citation Format

Share Document