scholarly journals Weather extremes : A spatio-temporal perspectives

MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 27-52
Author(s):  
L. S. RATHORE ◽  
D. R. PATTANAIK ◽  
S. C. BHAN

Being mainly an agricultural country the economy of India and its growth mainly depends on the vagaries of the weather and in particular the extreme weather events. India with a land of unique climatic regime due to several characteristic features, including (i) two monsoon seasons (south-west and north-east) leading to drought & flood condition, active and break cycle of monsoon and also heavy rainfall leading to flash flood and landslides, (ii) two cyclone seasons (pre and post-monsoon cyclone seasons), (iii) hot weather season characterized by severe thunderstorms, dust storms and heat waves, (iv) cold weather season characterized by violent snow storms in the Himalayan regions, cold waves and fog. The socio-economic impacts of the extreme weather events such as floods, droughts, heavy rainfall, cyclones, hail storm, thunderstorm, heat and cold waves have been increasing due to large growth of population and urbanizations, which has led to greater vulnerability. A spatio-temporal analysis of these weather extremes over India will be very helpful to understand the vulnerability potential and to improve the forecast skill and use these forecasts in minimizing the adverse impacts of such weather extremes. 

2016 ◽  
Vol 23 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Zbigniew W. Kundzewicz

Abstract The damage (in real terms after adjusting for inflation) caused by extreme weather events globally has increased dramatically over the past few decades. This is a result of an increase in the amplitude and frequency of weather extremes, as well as of human factors causing a widespread increase in levels of exposure and vulnerability. There are a number of reasons to consider that, in many regions of the globe, weather extremes (e.g. heat waves, droughts, forest fires, intense rainfall, floods and landslides) are becoming both yet more extreme and more frequent. Projections for the future based on climate and impact models point to a further strengthening of this trend. There has already been an increase in rainfall intensity in conditions of a warmer climate, and a continuation of this trend is expected, with adverse consequences for flood risk. However, the development of flood-prone areas and increase in damage potential are often the dominant factors underpinning growing flood damage and flood risk. In warmer climates, an increased risk of river and flash flooding caused by heavy rainfall, as well as an increasing risk of coastal flooding associated with sea level rise can be expected over large areas. By the same token, a reduction in the risk of snowmelt flooding events is projected in the warmer climate. Projections also indicate an increased risk of drought in many areas. The projections for climate change in Poland point to several risks associated with an increase in the frequency, intensity and severity of weather extremes (heat waves, intensive rainfall, flooding and landslides, coastal surges, drought during the growing season and winter, strong winds and pathogens associated with warming). Heat waves will become more frequent, more intense and more troublesome for the ageing population of Poland.


2018 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
Kun Luo ◽  
L. Ruby Leung ◽  
Yang Zhang ◽  
...  

Abstract. The Weather Research and Forecasting model with Chemistry (WRF/Chem) was used to study the effect of extreme weather events on ozone in US for historical (2001–2010) and future (2046–2055) periods under RCP8.5 scenario. During extreme weather events, including heat waves, atmospheric stagnation, and their compound events, ozone concentration is much higher compared to non-extreme events period. A striking enhancement of effect during compound events is revealed when heat wave and stagnation occur simultaneously and both high temperature and low wind speed promote the production of high ozone concentrations. In regions with high emissions, compound extreme events can shift the high-end tails of the probability density functions (PDFs) of ozone to even higher values to generate extreme ozone episodes. In regions with low emissions, extreme events can still increase high ozone frequency but the high-end tails of the PDFs are constrained by the low emissions. Despite large anthropogenic emission reduction projected for the future, compound events increase ozone more than the single events by 10 % to 13 %, comparable to the present, and high ozone episodes are not eliminated. Using the CMIP5 multi-model ensemble, the frequency of compound events is found to increase more dominantly compared to the increased frequency of single events in the future over the US, Europe, and China. High ozone episodes will likely continue in the future due to increases in both frequency and intensity of extreme events, despite reductions in anthropogenic emissions of its precursors. However, the latter could reduce or eliminate extreme ozone episodes, so improving projections of compound events and their impacts on extreme ozone may better constrain future projections of extreme ozone episodes that have detrimental effects on human health.


2019 ◽  
Vol 25 (4) ◽  
pp. 189-190
Author(s):  
Kent E. Pinkerton ◽  
Emily Felt ◽  
Heather E. Riden

Abstract. A warming climate has been linked to an increase in the frequency and severity of extreme weather events, including heat and cold waves, extreme precipitation, and wildfires. This increase in extreme weather results in increased risks to the health and safety of farmworkers. Keywords: Climate change, Extreme weather, Farmworkers, Global warming, Health and safety.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 133 ◽  
Author(s):  
Lijun Liu ◽  
Yuanqiao Wen ◽  
Youjia Liang ◽  
Fan Zhang ◽  
Tiantian Yang

The impact of extreme weather events on the navigation environment in the inland waterways of the Yangtze River is an interdisciplinary hotspot in subjects of maritime traffic safety and maritime meteorology, and it is also a difficult point for the implementation of decision-making and management by maritime and meteorological departments in China. The objective of this study is to review the variation trends and distribution patterns in the periods of adverse and extreme weather events that are expected to impact on inland waterways transport (IWT) on the Yangtze River. The frequency of severe weather events, together with the changes in their spatial extension and intensity, is analyzed based on the ERA-Interim datasets (1979–2017) and the GHCNDEX dataset (1979–2017), as well as the research progresses and important events (2004–2016) affecting the navigation environment. The impacts of extreme weather events on IWT accidents and phenomena of extreme weather (e.g., thunderstorms, lightning, hail, and tornadoes) that affect the navigation environment are also analyzed and discussed. The results show that: (1) the sections located in the plain climate zone is affected by extreme weather in every season, especially strong winds and heat waves; (2) the sections located in the hilly mountain climate zone is affected particularly by spring extreme phenomena, especially heat waves; (3) the sections located in the Sichuan Basin climate zone is dominated by the extreme weather phenomena in autumn, except cold waves; (4) the occurrence frequency of potential flood risk events is relatively high under rainstorm conditions and wind gusts almost affect the navigation environment of the Jiangsu and Shanghai sections in every year; (5) the heat wave indices (TXx, TR, and WSDI) tend to increase and the temperature of the coldest day of the year gradually increases; (6) the high occurrences of IWT accidents need to be emphasized by relevant departments, caused by extreme weather during the dry season; and (7) the trends and the degree of attention of extreme weather events affecting IWT are ranked as: heat wave > heavy rainfall > wind gust > cold spell > storm. Understanding the seasonal and annual frequency of occurrence of extreme weather events has reference significance for regional management of the Yangtze River.


2011 ◽  
Vol 17 (2) ◽  
pp. 141 ◽  
Author(s):  
Denis A Saunders ◽  
Peter Mawson ◽  
Rick Dawson

Carnaby’s Black Cockatoo is an endangered species which has undergone a dramatic decline in range and abundance in southwestern Australia. Between October 2009 and March 2010 the species was subjected to a possible outbreak of disease in one of its major breeding areas and exposed to an extremely hot day and a severe localized hail storm. In addition, collisions with motor vehicles are becoming an increasing threat to the species. All of these stochastic events resulted in many fatalities. Species such as Carnaby’s Black Cockatoo which form large flocks are particularly susceptible to localized events such as hail storms, contagious disease and collisions with motor vehicles. Extreme temperatures may have major impacts on both flocking and non-flocking species. Predictions of climate change in the southwest of Western Australia are that there will be an increased frequency of extreme weather events such as heat waves and severe hail storms. The implications of more events of this nature on Carnaby’s Black Cockatoo are discussed.


2020 ◽  
Author(s):  
Assaf Hochman ◽  
Pinhas Alpert ◽  
Hadas Saaroni ◽  
Tzvi Harpaz ◽  
Joaquim G. Pinto ◽  
...  

<p>Extreme weather events have long been considered challenging to predict. It is likely that global warming will trigger extreme weather in many regions of the globe and especially over the Mediterranean ´hot spot´. Therefore, extreme weather events have been selected as one of the grand challenges of the World Climate Research Program.</p><p>The intrinsic predictability of a weather system, or any dynamical system, depends on its persistence and its active number of degrees of freedom. Recent developments in dynamical systems theory allow to compute these metrics for atmospheric configurations (1). In most of the mid-latitudes, synoptic scale patterns exert a strong control on regional weather, thus, stimulating a broad interest, especially in weather forecasting. Recently, we have integrated the dynamical systems approach with a synoptic classification algorithm over the Eastern Mediterranean (2).  It was shown that the dynamical systems perspective provides an extremely informative tool for evaluating the predictability of synoptic patterns and especially of weather extremes.</p><p>The novel perspective, which leverages a dynamical systems approach to investigate the predictability of extreme weather events, outlines a new avenue of research that may be fruitfully applied at operational weather and climate forecasting services in the Mediterranean Region and around the globe.</p><p><strong>References</strong></p><ol><li>Faranda D, Messori G, Yiou P. 2017. Dynamical Proxies of North Atlantic Predictability and Extremes. Scientific Reports <strong>7</strong>, 412782017b. DOI: 10.1038/srep4127</li> <li>Hochman A, Alpert P, Harpaz T, Saaroni H, Messori G. 2019. A New Dynamical Systems Perspective on Atmospheric Predictability; Eastern Mediterranean Weather Regimes as a Case Study. Science Advances <strong>5</strong>. DOI: 10.1126/sciadv.aau0936</li> </ol>


2021 ◽  
Author(s):  
Sanaz Moghim ◽  
Mohammad Sina Jahangir

Abstract Extreme weather events such as heat waves and cold spells affect people’s lives. This study uses a probabilistic framework to evaluate heat waves and cold spells in different regions (Tehran in Iran and Vancouver in Canada). Average daily temperatures of meteorological stations of the two cities from 1995 to 2016 are used to identify four main indicators including intensity, average intensity, duration, and the rate of the occurrence. In addition, average intensities of the events are obtained from the MODIS Land Surface Temperature (LST) in each pixel of the two cities. To include possible uncertainties, the predictive probability distributions of the intensity and duration are derived using a Bayesian scheme and Monte-Carlo Markov Chain (MCMC) method. The probability distributions of the indicators show that the most extreme temperature (lowest temperature) occurs during the cold spell. Results indicate that although Tehran is more probable to experience heat waves than Vancouver, both cities are more likely to be affected by the cold spell than the heat wave. The developed approach can be used to characterize other extreme weather events in any location.


2013 ◽  
Vol 142 (9) ◽  
pp. 1859-1868 ◽  
Author(s):  
J. WU ◽  
M. YUNUS ◽  
P. K. STREATFIELD ◽  
M. EMCH

SUMMARYThis study examined the effects of meteorological factors, particularly, extreme weather events, on the prevalence of childhood diarrhoeal disease in Matlab, Bangladesh. Logistic regression models were used to examine impacts of temperature, rainfall and the extreme weather factors (the number of hot days and days with heavy rainfall) on childhood diarrhoea from 2000 to 2006 at the bari (cluster of dwellings) level. The results showed that the increases in the number of hot days and days with heavy rainfall were associated with an increase in daily diarrhoea cases by 0·8–3·8% and 1–6·2%, respectively. The results from multivariable stepwise models showed that the extreme weather factors were still positively associated with childhood diarrhoea, while the associations for average temperature and rainfall could be negative after other variables were controlled. The findings showed that not only the intensity, but also the frequency of extreme weather events had significant effects on childhood diarrhoea.


2018 ◽  
Vol 18 (13) ◽  
pp. 9861-9877 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
Kun Luo ◽  
L. Ruby Leung ◽  
Yang Zhang ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to study the effect of extreme weather events on ozone in the US for historical (2001–2010) and future (2046–2055) periods under the RCP8.5 scenario. During extreme weather events, including heat waves, atmospheric stagnation, and their compound events, ozone concentration is much higher compared to the non-extreme events period. A striking enhancement of effect during compound events is revealed when heat wave and stagnation occur simultaneously as both high temperature and low wind speed promote the production of high ozone concentrations. In regions with high emissions, compound extreme events can shift the high-end tails of the probability density functions (PDFs) of ozone to even higher values to generate extreme ozone episodes. In regions with low emissions, extreme events can still increase high-ozone frequency but the high-end tails of the PDFs are constrained by the low emissions. Despite the large anthropogenic emission reduction projected for the future, compound events increase ozone more than the single events by 10 to 13 %, comparable to the present, and high-ozone episodes with a maximum daily 8 h average (MDA8) ozone concentration over 70 ppbv are not eliminated. Using the CMIP5 multi-model ensemble, the frequency of compound events is found to increase more dominantly compared to the increased frequency of single events in the future over the US, Europe, and China. High-ozone episodes will likely continue in the future due to increases in both frequency and intensity of extreme events, despite reductions in anthropogenic emissions of its precursors. However, the latter could reduce or eliminate extreme ozone episodes; thus improving projections of compound events and their impacts on extreme ozone may better constrain future projections of extreme ozone episodes that have detrimental effects on human health.


Sign in / Sign up

Export Citation Format

Share Document