scholarly journals Latest seasonal trend of aerosol, particulate matter and ozone in Delhi

MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 619-624
Author(s):  
D. K. CHAKRABARTY ◽  
S. K. PESHIN

In this work, latest seasonal variation of aerosol, particulate matter and ozone in Delhi has been studied. Observations show that during winter, concentration of surface O3 is low and that of PM2.5 and PM10 is high. Aerosol size and aerosol content increases during winter. Decrease in surface ozone is explainable by gas phase and heterogeneous chemistry.  An interesting feature is, along with surface ozone, total ozone also shows a low value during winter. This is a characteristic of ozone in Indo-Gangetic plain. Indo-Gangetic plain is covered by mild to heavy fog during most of the days in winter. It is possible that increase in size and content of aerosol and PM particles coupled with low temperature, low solar flux and high humidity is the cause of fog formation during winter in Indo-Gangetic plain.

2015 ◽  
Vol 6 (3) ◽  
pp. 398-405 ◽  
Author(s):  
Ana M. Villalobos ◽  
Mansur O. Amonov ◽  
Martin M. Shafer ◽  
J. Jai Devi ◽  
Tarun Gupta ◽  
...  

2012 ◽  
Vol 12 (14) ◽  
pp. 6335-6355 ◽  
Author(s):  
U. Im ◽  
M. Kanakidou

Abstract. Megacities are large urban agglomerations with intensive anthropogenic emissions that have significant impacts on local and regional air quality. In the present mesoscale modeling study, the impacts of anthropogenic emissions from the Greater Istanbul Area (GIA) and the Greater Athens Area (GAA) on the air quality in GIA, GAA and the entire East Mediterranean are quantified for typical wintertime (December 2008) and summertime (July 2008) conditions. They are compared to those of the regional anthropogenic and biogenic emissions that are also calculated. Finally, the efficiency of potential country-based emissions mitigation in improving air quality is investigated. The results show that relative contributions from both cities to surface ozone (O3) and aerosol levels in the cities' extended areas are generally higher in winter than in summer. Anthropogenic emissions from GIA depress surface O3 in the GIA by ~ 60% in winter and ~ 20% in summer while those from GAA reduce the surface O3 in the GAA by 30% in winter and by 8% in summer. GIA and GAA anthropogenic emissions contribute to the fine particulate matter (PM2.5) levels inside the cities themselves by up to 75% in winter and by 50% (GIA) and ~ 40% (GAA), in summer. GIA anthropogenic emissions have larger impacts on the domain-mean surface O3 (up to 1%) and PM2.5 (4%) levels compared to GAA anthropogenic emissions (<1% for O3 and ≤2% for PM2.5) in both seasons. Impacts of regional anthropogenic emissions on the domain-mean surface pollutant levels (up to 17% for summertime O3 and 52% for wintertime fine particulate matter, PM2.5) are much higher than those from Istanbul and Athens together (~ 1% for O3 and ~ 6% for PM2.5, respectively). Regional biogenic emissions are found to limit the production of secondary inorganic aerosol species in summer up to 13% (non-sea-salt sulfate (nss-SO42−) in rural Athens) due to their impact on oxidant levels while they have negligible impact in winter. Finally, the responses to country-based anthropogenic emission mitigation scenarios inside the studied region show increases in O3 mixing ratios in the urban areas of GIA and GAA, higher in winter (~ 13% for GIA and 2% for GAA) than in summer (~ 7% for GIA and <1% for GAA). On the opposite PM2.5 concentrations decrease by up to 30% in GIA and by 20% in GAA with the highest improvements computed for winter. The emission reduction strategy also leads to domain-wide decreases in most primary pollutants like carbon monoxide (CO) or nitrogen oxides (NOx) for both seasons. The results show the importance of long range transport of pollutants for the air quality in the East Mediterranean. Thus, improvements of air quality in the East Mediterranean require coordinated efforts inside the region and beyond.


2018 ◽  
Vol 127 (3) ◽  
Author(s):  
Nidhi Verma ◽  
Aparna Satsangi ◽  
Anita Lakhani ◽  
K Maharaj Kumari

2021 ◽  
Vol 21 (14) ◽  
pp. 10881-10909
Author(s):  
Caterina Mogno ◽  
Paul I. Palmer ◽  
Christoph Knote ◽  
Fei Yao ◽  
Timothy J. Wallington

Abstract. The Indo-Gangetic Plain (IGP) is home to 9 % of the global population and is responsible for a large fraction of agricultural crop production in Pakistan, India, and Bangladesh. Levels of fine particulate matter (mean diameter <2.5 µm, PM2.5) across the IGP often exceed human health recommendations, making cities across the IGP among the most polluted in the world. Seasonal changes in the physical environment over the IGP are dominated by the large-scale south Asian monsoon system that dictates the timing of agricultural planting and harvesting. We use the WRF-Chem model to study the seasonal anthropogenic, pyrogenic, and biogenic influences on fine particulate matter and its constituent organic aerosol (OA) over the IGP that straddles Pakistan, India, and Bangladesh during 2017–2018. We find that surface air quality during pre-monsoon (March–May) and monsoon (June–September) seasons is better than during post-monsoon (October–December) and winter (January–February) seasons, but all seasonal mean values of PM2.5 still exceed the recommended levels, so that air pollution is a year-round problem. Anthropogenic emissions influence the magnitude and distribution of PM2.5 and OA throughout the year, especially over urban sites, while pyrogenic emissions result in localised contributions over the central and upper parts of IGP in all non-monsoonal seasons, with the highest impact during post-monsoon seasons that correspond to the post-harvest season in the agricultural calendar. Biogenic emissions play an important role in the magnitude and distribution of PM2.5 and OA during the monsoon season, and they show a substantial contribution to secondary OA (SOA), particularly over the lower IGP. We find that the OA contribution to PM2.5 is significant in all four seasons (17 %–30 %), with primary OA generally representing the larger fractional contribution. We find that the volatility distribution of SOA is driven mainly by the mean total OA loading and the washout of aerosols and gas-phase aerosol precursors that result in SOA being less volatile during the pre-monsoon and monsoon season than during the post-monsoon and winter seasons.


2020 ◽  
Vol 20 (21) ◽  
pp. 13455-13466
Author(s):  
Zhihao Shi ◽  
Lin Huang ◽  
Jingyi Li ◽  
Qi Ying ◽  
Hongliang Zhang ◽  
...  

Abstract. Meteorological conditions play important roles in the formation of ozone (O3) and fine particulate matter (PM2.5). China has been suffering from serious regional air pollution problems, characterized by high concentrations of surface O3 and PM2.5. In this study, the Community Multiscale Air Quality (CMAQ) model was used to quantify the sensitivity of surface O3 and PM2.5 to key meteorological parameters in different regions of China. Six meteorological parameters were perturbed to create different meteorological conditions, including temperature (T), wind speed (WS), absolute humidity (AH), planetary boundary layer height (PBLH), cloud liquid water content (CLW) and precipitation (PCP). Air quality simulations under the perturbed meteorological conditions were conducted in China in January and July of 2013. The changes in O3 and PM2.5 concentrations due to individual meteorological parameters were then quantified. T has a great influence on the daily maximum 8 h average O3 (O3-8 h) concentrations, which leads to O3-8 h increases by 1.7 in January in Chongqing and 1.1 ppb K−1 in July in Beijing. WS, AH, and PBLH have a smaller but notable influence on O3-8 h with maximum change rates of 0.3 ppb %−1, −0.15 ppb %−1, and 0.14 ppb %−1, respectively. T, WS, AH, and PBLH have important effects on PM2.5 formation of both in January and July. In general, PM2.5 sensitivities are negative to T, WS, and PBLH and positive to AH in most regions of China. The sensitivities in January are much larger than in July. PM2.5 sensitivity to T, WS, PBLH, and AH in January can be up to −5 µg m−3 K−1, −3 µg m−3 %−1, −1 µg m−3 %−1, and +0.6 µg m−3 %−1, respectively, and in July it can be up to −2 µg m−3 K−1, −0.4 µg m−3 %−1, −0.14 µg m−3 %−1, and +0.3 µg m−3 %−1, respectively. Other meteorological factors (CLW and PCP) have negligible effects on O3-8 h (less than 0.01 ppb %−1) and PM2.5 (less than 0.01 µg m−3 %−1). The results suggest that surface O3 and PM2.5 concentrations can change significantly due to changes in meteorological parameters, and it is necessary to consider these effects when developing emission control strategies in different regions of China.


2020 ◽  
Author(s):  
Lian Zong ◽  
Yuanjian Yang ◽  
Meng Gao ◽  
Hong Wang ◽  
Peng Wang ◽  
...  

Abstract. In recent years, surface ozone (O3) pollution during summertime (June–August) over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 (particulate matter with aerodynamic diameter &amp;leq; 2.5 μm in the air) pollution can co-occur. However, the synoptic circulation pattern related to this compound pollution remains unclear. In this study, the T-mode principal component analysis method is used to objectively classify four synoptic weather patterns (SWPs) that occur over eastern China, based on the geopotential heights at 500 hPa during summertime from 2015 to 2018. Four SWPs of eastern China are closely related to the western Pacific subtropical high (WPSH), exhibiting, significant intraseasonal and interannual variations. Note that remarkable spatial and temporal disparities of surface O3 and PM2.5 pollution are given under these four different SWPs according to the ground-level air quality and meteorological observations. In areas controlled by the WPSH or the prevailing westerlies, O3 pollution is mainly caused by photochemical reactions of nitrogen oxides and volatile organic compounds under weather conditions of high temperature, moderate humidity and slight precipitation. In particular, the warm moist flow brought by the WPSH can promote hygroscopic growth of fine particulate matter in some local areas, resulting in the increase of PM2.5 concentrations, which may form co-occurring surface O3 and PM2.5 pollution. In addition, the low boundary layer height and frequency of light-wind days are closely related to the transmission and diffusion of pollutants under the different SWPs, modulating the levels of O3–PM2.5 compound pollution. Overall, our findings demonstrate the different roles played by synoptic weather patterns in driving regional surface O3–PM2.5 compound pollution, in addition to the large quantities of emissions, and may also provide insights into the regional co-occurring high PM2.5 and high O3 level via the effects of certain meteorological factors.


2014 ◽  
Vol 14 (12) ◽  
pp. 5921-5941 ◽  
Author(s):  
V. Sinha ◽  
V. Kumar ◽  
C. Sarkar

Abstract. One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5–20 m s−1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol−1 for aromatic VOCs, 5.9 to 37.5 nmol mol−1 for the oxygenated VOCs, 1.4 nmol mol−1 for acetonitrile, 1.9 nmol mol−1 for isoprene, 567 nmol mol−1 for carbon monoxide, 57.8 nmol mol−1 for ozone, 11.5 nmol mol−1 for nitrogen oxides, 7.3 nmol mol−1 for sulfur dioxide, 104 μg m−3 for PM2.5 and 276 μg m−3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant source of oxygenated VOCs and isoprene (r2 with acetonitrile &amp;geq;0.5 for nighttime data), which is remarkable in terms of atmospheric chemistry implications. Surface ozone exceeded the 8 h national ambient air quality limit of 100 μg O3 m−3 (~50 ppbv) on a daily basis, except for 17 May 2012, when a severe dust storm event (PM2.5 > 800 μg m−3; PM10 > 2700 μg m−3) characterized by long-range transport from the west impacted the site. The novel data set and results point to the occurrence of high primary emissions of reactive VOCs. They also highlight the urgent need for establishing more comprehensive observational facilities in the IGP to constrain the spatial and seasonal variability of atmospheric chemical constituents. Such efforts will enable a mechanistic-level understanding of the in situ chemical processes controlling the formation of surface ozone, a necessary step for effective ozone mitigation and improvement of the regional air quality.


Sign in / Sign up

Export Citation Format

Share Document