scholarly journals Synoptic drivers of co-occurring summertime ozone and PM<sub>2.5</sub> pollution in eastern China

2020 ◽  
Author(s):  
Lian Zong ◽  
Yuanjian Yang ◽  
Meng Gao ◽  
Hong Wang ◽  
Peng Wang ◽  
...  

Abstract. In recent years, surface ozone (O3) pollution during summertime (June–August) over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 (particulate matter with aerodynamic diameter &amp;leq; 2.5 μm in the air) pollution can co-occur. However, the synoptic circulation pattern related to this compound pollution remains unclear. In this study, the T-mode principal component analysis method is used to objectively classify four synoptic weather patterns (SWPs) that occur over eastern China, based on the geopotential heights at 500 hPa during summertime from 2015 to 2018. Four SWPs of eastern China are closely related to the western Pacific subtropical high (WPSH), exhibiting, significant intraseasonal and interannual variations. Note that remarkable spatial and temporal disparities of surface O3 and PM2.5 pollution are given under these four different SWPs according to the ground-level air quality and meteorological observations. In areas controlled by the WPSH or the prevailing westerlies, O3 pollution is mainly caused by photochemical reactions of nitrogen oxides and volatile organic compounds under weather conditions of high temperature, moderate humidity and slight precipitation. In particular, the warm moist flow brought by the WPSH can promote hygroscopic growth of fine particulate matter in some local areas, resulting in the increase of PM2.5 concentrations, which may form co-occurring surface O3 and PM2.5 pollution. In addition, the low boundary layer height and frequency of light-wind days are closely related to the transmission and diffusion of pollutants under the different SWPs, modulating the levels of O3–PM2.5 compound pollution. Overall, our findings demonstrate the different roles played by synoptic weather patterns in driving regional surface O3–PM2.5 compound pollution, in addition to the large quantities of emissions, and may also provide insights into the regional co-occurring high PM2.5 and high O3 level via the effects of certain meteorological factors.

2021 ◽  
Vol 21 (11) ◽  
pp. 9105-9124
Author(s):  
Lian Zong ◽  
Yuanjian Yang ◽  
Meng Gao ◽  
Hong Wang ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) pollution during summer (June–August) over eastern China has become more severe in recent years, resulting in a co-occurrence of surface O3 and PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 µm in the air) pollution. However, the mechanisms regarding how the synoptic weather pattern (SWP) might influence this compound pollution remain unclear. In this study, we applied the T-mode principal component analysis (T-PCA) method to objectively classify the occurrence of four SWPs over eastern China, based on the geopotential heights at 500 hPa during summer (2015–2018). These four SWPs over eastern China were closely related to the western Pacific subtropical high (WPSH), exhibiting significant intra-seasonal and interannual variations. Based on ground-level air quality observations, remarkable spatial and temporal disparities of surface O3 and PM2.5 pollution were also found under the four SWPs. In particular, there were two SWPs that were sensitive to compound pollution (Type 1 and Type 2). Type 1 was characterized by a stable WPSH ridge with its axis at about 22∘ N and the rain belt located south of the Yangtze River Delta (YRD); Type 2 also exhibited WPSH dominance (ridge axis at ∼ 25∘ N) but with the rain belt (over the YRD) at a higher latitude compared to Type 1. In general, SWPs have played an important role as driving factors of surface O3–PM2.5 compound pollution in a regional context. Our findings demonstrate the important role played by SWPs in driving regional surface O3–PM2.5 compound pollution, in addition to the large quantities of emissions, and may also provide insights into the regional co-occurring high levels of both PM2.5 and O3 via the effects of certain meteorological factors.


Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Joowan Kim ◽  
Eun-Chul Chang ◽  
Jung-Hoon Kim ◽  
...  

AbstractThis study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea-level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea-level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatio-temporal occurrence distribution. The result provides useful guidance for predicting the HREs by depicting important factors to be differently considered depending on their synoptic categorization.


2020 ◽  
Vol 20 (1) ◽  
pp. 203-222 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Lei Shu ◽  
Tijian Wang ◽  
Huiling Yuan

Abstract. Ozone pollution in China is influenced by meteorological processes on multiple scales. Using regression analysis and weather classification, we statistically assess the impacts of local and synoptic meteorology on daily variability in surface ozone in eastern China in summer during 2013–2018. In this period, summertime surface ozone in eastern China (20–42∘ N, 110–130∘ E) is among the highest in the world, with regional means of 73.1 and 114.7 µg m−3, respectively, in daily mean and daily maximum 8 h average. Through developing a multiple linear regression (MLR) model driven by local and synoptic weather factors, we establish a quantitative linkage between the daily mean ozone concentrations and meteorology in the study region. The meteorology described by the MLR can explain ∼43 % of the daily variability in summertime surface ozone across eastern China. Among local meteorological factors, relative humidity is the most influential variable in the center and south of eastern China, including the Yangtze River Delta and the Pearl River Delta regions, while temperature is the most influential variable in the north, covering the Beijing–Tianjin–Hebei region. To further examine the synoptic influence of weather conditions explicitly, six predominant synoptic weather patterns (SWPs) over eastern China in summer are objectively identified using the self-organizing map clustering technique. The six SWPs are formed under the integral influence of the East Asian summer monsoon, the western Pacific subtropical high, the Meiyu front, and the typhoon activities. On average, regionally, two SWPs bring about positive ozone anomalies (1.1 µg m−3 or 1.7 % and 2.7 µg m−3 or 4.6 %), when eastern China is under a weak cyclone system or under the prevailing southerly wind. The impact of SWPs on the daily variability in surface ozone varies largely within eastern China. The maximum impact can reach ±8 µg m−3 or ±16 % of the daily mean in some areas. A combination of the regression and the clustering approaches suggests a strong performance of the MLR in predicting the sensitivity of surface ozone in eastern China to the variation of synoptic weather. Our assessment highlights the importance of meteorology in modulating ozone pollution over China.


2019 ◽  
Vol 214 ◽  
pp. 116864 ◽  
Author(s):  
Myung-Il Jung ◽  
Seok-Woo Son ◽  
Hyun Cheol Kim ◽  
Sang-Woo Kim ◽  
Rokjin J. Park ◽  
...  

2019 ◽  
Vol 19 (22) ◽  
pp. 13933-13943 ◽  
Author(s):  
Zhicong Yin ◽  
Bufan Cao ◽  
Huijun Wang

Abstract. Surface ozone has been severe during summers in the eastern parts of China, damaging human health and flora and fauna. During 2015–2018, ground-level ozone pollution increased and intensified from south to north. In North China and the Huanghuai region, the O3 concentrations were highest. Two dominant patterns of summer ozone pollution were determined, i.e., a south–north covariant pattern and a south–north differential pattern. The anomalous atmospheric circulations composited for the first pattern manifested as a zonally enhanced East Asian deep trough and as a western Pacific subtropical high, whose western ridge point shifted northward. The local hot, dry air and intense solar radiation enhanced the photochemical reactions to elevate the O3 pollution levels in North China and the Huanghuai region; however, the removal of pollutants was decreased. For the second pattern, the broad positive geopotential height anomalies at high latitudes significantly weakened cold air advection from the north, and those extending to North China resulted in locally high temperatures near the surface. In a different manner, the western Pacific subtropical high transported sufficient water vapor to the Yangtze River Delta and resulted in a locally adverse environment for the formation of surface ozone. In addition, the most dominant pattern in 2017 and 2018 was different from that in previous years, which is investigated as a new feature.


2012 ◽  
Vol 12 (14) ◽  
pp. 6335-6355 ◽  
Author(s):  
U. Im ◽  
M. Kanakidou

Abstract. Megacities are large urban agglomerations with intensive anthropogenic emissions that have significant impacts on local and regional air quality. In the present mesoscale modeling study, the impacts of anthropogenic emissions from the Greater Istanbul Area (GIA) and the Greater Athens Area (GAA) on the air quality in GIA, GAA and the entire East Mediterranean are quantified for typical wintertime (December 2008) and summertime (July 2008) conditions. They are compared to those of the regional anthropogenic and biogenic emissions that are also calculated. Finally, the efficiency of potential country-based emissions mitigation in improving air quality is investigated. The results show that relative contributions from both cities to surface ozone (O3) and aerosol levels in the cities' extended areas are generally higher in winter than in summer. Anthropogenic emissions from GIA depress surface O3 in the GIA by ~ 60% in winter and ~ 20% in summer while those from GAA reduce the surface O3 in the GAA by 30% in winter and by 8% in summer. GIA and GAA anthropogenic emissions contribute to the fine particulate matter (PM2.5) levels inside the cities themselves by up to 75% in winter and by 50% (GIA) and ~ 40% (GAA), in summer. GIA anthropogenic emissions have larger impacts on the domain-mean surface O3 (up to 1%) and PM2.5 (4%) levels compared to GAA anthropogenic emissions (<1% for O3 and ≤2% for PM2.5) in both seasons. Impacts of regional anthropogenic emissions on the domain-mean surface pollutant levels (up to 17% for summertime O3 and 52% for wintertime fine particulate matter, PM2.5) are much higher than those from Istanbul and Athens together (~ 1% for O3 and ~ 6% for PM2.5, respectively). Regional biogenic emissions are found to limit the production of secondary inorganic aerosol species in summer up to 13% (non-sea-salt sulfate (nss-SO42−) in rural Athens) due to their impact on oxidant levels while they have negligible impact in winter. Finally, the responses to country-based anthropogenic emission mitigation scenarios inside the studied region show increases in O3 mixing ratios in the urban areas of GIA and GAA, higher in winter (~ 13% for GIA and 2% for GAA) than in summer (~ 7% for GIA and <1% for GAA). On the opposite PM2.5 concentrations decrease by up to 30% in GIA and by 20% in GAA with the highest improvements computed for winter. The emission reduction strategy also leads to domain-wide decreases in most primary pollutants like carbon monoxide (CO) or nitrogen oxides (NOx) for both seasons. The results show the importance of long range transport of pollutants for the air quality in the East Mediterranean. Thus, improvements of air quality in the East Mediterranean require coordinated efforts inside the region and beyond.


Sign in / Sign up

Export Citation Format

Share Document