scholarly journals Synoptic & climatological aspects of extreme rainfall over western Himalayas towards end of 2014 southwest monsoon season

MAUSAM ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 597-606
Author(s):  
B. P. YADAV ◽  
NARESH KUMAR ◽  
SONUM LOTUS

A diagnostic study has been carried out to analyse and understand the causes of unusual rainfall activity over Jammu & Kashmir (J&K) State during 2nd to 5th September, 2014. The careful examination of available historical rainfall data of India Meteorological Department (IMD) network reveals that many stations in the region received ever-highest 24, 48 & 72 hours cumulative rainfall during first week of September in 2014, breaking all previous records. In result, there was flooding in most parts of the State, which has caused loss of human lives and huge loss of property. The synoptic interpretation of this unusual event carried out in the study confirms very favourable meteorological conditions, as there was a western disturbance (WD) in form of cyclonic circulation/trough in mid-tropospheric level, which remained practically stationary over north Pakistan and adjoining Jammu & Kashmir from 2nd to 5th September, 2014 and its interaction with a monsoon Low-Pressure Area (LPA) over northwest & adjoining central India during the same period.  In addition, jet maxima of the order 60-80 knots and high moisture advection from the Bay of Bengal as well as from Arabian Sea over the region were also responsible for this unusual rainfall.

MAUSAM ◽  
2021 ◽  
Vol 62 (2) ◽  
pp. 179-196
Author(s):  
D.S. PAI ◽  
O.P. SREEJITH ◽  
S.G. NARGUND ◽  
MADHURI MUSALE ◽  
AJIT TYAGI

At present, India Meteorological Department (IMD) issues various monthly and seasonal operational forecasts for the south-west monsoon season using models based on latest statistical techniques with useful skill. Operational models are reviewed regularly and improved through in house research activities. For the forecasting of the south-west monsoon season (June – September) rainfall over the country as a whole, a newly introduced statistical ensemble forecasting system is used. In addition, models have been developed for the forecast of the monsoon season rainfall over four geographical regions (NW India, NE India, Central India and South Peninsula) of the country and forecast for the rainfall over the second half of the monsoon season over the country as a whole. Models have also been developed for issuing operational forecast for the monthly rainfall for the months of July, August & September over the country as a whole. Operational forecasts issued by IMD for 2010 south-west monsoon rainfall have been discussed and verified. In addition, the experimental forecasts for the season rainfall over the country as a whole based on bothstatistical and dynamical models received from various climate research institutes within the country other than IMD arealso discussed. The operational monthly and seasonal long range forecasts issued for the 2010 southwest monsoon season for the country as a whole were accurate. However, forecasts for the season rainfall over the 4 geographical regions (Northwest India, Central India, Northeast India and south Peninsular India) were not accurate as the forecast for South Peninsular India overestimated the actual rainfall and that for northeast India underestimated the actual rainfall. The experimental forecasts for the season rainfall over the country as whole from various climate research institutes within the country showed large variance (91 % - 112% of LPA).


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 523-552
Author(s):  
Editor Mausam

The rainfall over the country as a whole during the monsoon season (June-September) was 110% of its Long Period Average (LPA) and thus categorized as a normal* monsoon year. Seasonal rainfall over Central India region (1263.2 mm) was large excess with 129% of LPA rainfallwhich was third highest since 1901 after the years 1994 (1311.3 mm) and 1961 (1297 mm) for the broad geographical region of Central India. Rainfall over South Peninsula (116% of LPA) region was excess, over Northwest India (99% of LPA) was normal and East and Northeast Region remained deficient at 88% of LPA. Southwest monsoon reached parts over the Andaman Sea on 18 May, two days earlier than its normal date. However, it set in over Kerala on 8 June, 7 days later than its normal date and covered the entire country by 19 July with a delay of 4 days. Typically, the monsoon current begins to withdraw around 1 September, with the retreat completed by 15 October. This year, the retreat began on 9 October, marking the longest ever delay and was complete by 16 October in just 8 days. The withdrawal of Southwest monsoon from the entire country and the commencement of the Northeast monsoon rains occurred simultaneously on 16 October. Sometimes there is a gap of 10 days between the two seasons. Due to neutral ENSO conditions and weak Madden Julian Oscillation (MJO), their influence on the monsoon were nearly absent especially in the second half of the season. Positive Indian Ocean Dipole (IOD) episode was observed since the beginning of the monsoon season and its rapid strengthening to the strongest ever was observed by mid of the monsoon season.  


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


2021 ◽  
Author(s):  
Vijayakumar Sivadasan Nair ◽  
Usha Keshav Hasyagar ◽  
Surendran Nair Suresh Babu

<p>The snow-covered mountains of Himalayas are known to play a crucial role in the hydrology of South Asia and are known as the “Asian water tower”. Despite the high elevations, the transport of anthropogenic aerosols from south Asia and desert dust from west Asia plays a significant role in directly and indirectly perturbing the radiation balance and hydrological cycle over the region. Absorbing aerosols like black carbon (BC) and dust deposited on the snow surface reduces the albedo of the Himalayan snow significantly (snow darkening or snow albedo effect). Using a Regional Climate Model (RegCM-4.6.0) coupled with SNow, ICe and Aerosol Radiation (SNICAR) module, the implications of aerosol-induced snow darkening on the regional hydroclimate of the Himalayas are investigated in this study. The aerosols deposited on snow shows a distinct regional heterogeneity. The albedo reduction due to aerosols shows a west to east gradient during pre-monsoon season and this results in the positive radiative effect of about 29 Wm<sup>-2</sup>, 17 Wm<sup>-2</sup> and 5 Wm<sup>-2</sup> over western, central and eastern Himalayas respectively. The reduction in the snow albedo also results in the sign reversal of the aerosol direct radiative effect i.e., from warming to cooling at the top of the atmosphere during pre-monsoon season. The excess solar energy trapped at the surface due to snow darkening warms the surface (0.66-1.9 K) and thus decreases the snow cover extent significantly. This results in the reduction of the number of snow-covered days by more than a month over the western Himalayas and about 10 – 15 days over the central Himalayas. The early snowmelt due to aerosol-induced snow darkening results in the increase of runoff throughout the melting season. Therefore, the present study highlights the heterogeneous response of aerosol induced snow albedo feedbacks over the Himalayan region and its impact on the snowpack and hydrology, which has further implications on the freshwater availability over the region.</p>


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 503-514
Author(s):  
R. SURESH

The total ozone derived from TOVS data from NOAA 12 satellite through one step physical retrieval algorithm of  International TOVS Processing Package (ITPP) version 5.0 has been used to identify  its diurnal, monthly, latitudinal and longitudinal variability during 1998 over the domain Equator to 26° N / 60-100° E. The linkage of  maximum total ozone with warmer tropopause and lower stratosphere has been re-established. The colder upper tropospheric temperature which is normally associated with maximum ozone concentration throughout the year elsewhere in the world  has also been identified in this study but the relationship gets reversed during southwest  monsoon months(June-September) over the domain considered. The moisture  available in abundance in the lower troposphere gets precipitated due to the convective instability prevailing in the atmosphere during monsoon season and very little moisture is only available for vertical transport into the upper troposphere atop 500 hPa. The latent heat released by the  precipitation processes warms up the middle and upper atmosphere. The warm and dry upper troposphere could be the reason for less depletion of ozone in the upper troposphere during monsoonal  months and this is supported by the positive correlation coefficient prevailing in monsoon season between  total ozone and upper tropospheric (aloft 300 hPa) temperature. The warmness in middle and upper troposphere which is associated with less depletion and/or production of more  ozone in the upper troposphere may  perhaps contribute  for the  higher total ozone during monsoon months than in other seasons over peninsular Indian region.  The minimum concentration is observed during January (226 DU) over 6° N and the maximum (283DU) over 18° N during August. Longitudinal variability is less pronounced than the latitudinal variability.


Author(s):  
S. Salihin ◽  
T. A. Musa ◽  
Z. Mohd Radzi

This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD) which was estimated by Global Positioning System (GPS) processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV) values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.


2020 ◽  
Author(s):  
Mirjam van der Mheen ◽  
Erik van Sebille ◽  
Charitha Pattiaratchi

Abstract. A large percentage of global ocean plastic waste enters the northern hemisphere Indian Ocean (NIO). Despite this, it is unclear what happens to buoyant plastics in the NIO. Because the subtropics in the NIO is blocked by landmass, there is no subtropical gyre and no associated subtropical garbage patch in this region. We therefore hypothesise that plastics "beach" and end up on coastlines along the Indian Ocean rim. In this paper, we determine the influence of beaching plastics by applying different beaching conditions to Lagrangian particle tracking simulation results. Our results show that a large amount of plastic likely ends up on coastlines in the NIO, while some crosses the equator into the southern hemisphere Indian Ocean (SIO). In the NIO, the transport of plastics is dominated by seasonally reversing monsoonal currents, which transport plastics back and forth between the Arabian Sea and the Bay of Bengal. All buoyant plastic material in this region beaches within a few years in our simulations. Countries bordering the Bay of Bengal are particularly heavily affected by plastics beaching on coastlines. This is a result of both the large sources of plastic waste in the region, as well as ocean dynamics which concentrate plastics in the Bay of Bengal. During the intermonsoon period following the southwest monsoon season (September, October, November), plastics can cross the equator on the eastern side of the NIO basin into the SIO. Plastics that escape from the NIO into the SIO beach on eastern African coastlines and islands in the SIO or enter the subtropical SIO garbage patch.


Sign in / Sign up

Export Citation Format

Share Document