scholarly journals Extent of diurnal cycle of rainfall and its intra seasonal variation over coastal Tamil Nadu during north east monsoon season

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 1-18
Author(s):  
Y.E.A. RAJ ◽  
B. AMUDHA

The diurnal variation of north east monsoon rainfall of coastal Tamil Nadu represented by four coastal stations Chennai Nungambakkam (Nbk), Chennai Meenambakkam (Mbk), Nagapattinam (Npt) and Pamban (Pbn)  was  studied in detail based on hourly rainfall data of rainy days only, for the period 1 Oct-31 Dec for the 47/48  year period 1969-2016/2017.  Mean Octet rainfall and its anomaly were computed for the 8 octets  00-03,…., 21-24 hrs of the day and the anomaly was tested for statistical significance. Various analysis for the individual months of Oct, Nov, Dec and the entire period Oct-Dec were separately conducted.  The basic technique of evolutionary histogram analysis supplemented by harmonic analysis of octet mean rainfall anomaly was used to detect the diurnal cycle signal. Two indices  named as  diurnal variation of  rainfall index and coefficient of mean absolute octet rainfall anomaly representing the intensity of diurnal variation  in dimensionless numbers were defined,  computed  and interpreted. The analysis based on the above techniques revealed that the diurnal signal which shows an early morning maximum and late afternoon minimum of octet rainfall is well defined in Oct, decreases in Nov and further decreases in Dec for all the 4 stations. Though the diurnal variation manifests a well defined pattern in Dec the signal is not statistically significant in most cases. For Nbk and Mbk there is a weak secondary peak of octet rainfall anomaly occurring in the forenoon and afternoon respectively in Oct and Dec suggesting the presence of semi-diurnal variation of rainfall. Stationwise, the diurnal signal is most well defined for each month/season in Pbn followed by Npt, Nbk and then Mbk.   The physical causes behind the diurnal signal and its decrease as the north east monsoon season advances from Oct to Dec have been deliberated. The well known feature of nocturnal maximum of oceanic convection influencing a coastal station with maritime climate and the higher saturation at the lower levels of the upper atmosphere in the early morning hours have been advanced as some of the causes. For the much more complex feature of decrease of diurnal signal with the  advancement of the season, the decrease of minimum surface temperature over coastal Tamil Nadu from Oct to Dec causing an early morning conceptual land breeze has been shown as one of the plausible causes  based on analysis of temperature and wind.  Scope for further work based on data from automatic weather stations, weather satellites and Doppler Weather Radars has been discussed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
U. V. Murali Krishna ◽  
Subrata Kumar Das ◽  
Sachin M. Deshpande ◽  
G. Pandithurai

AbstractDiurnal variation of convective storms (CSs) during monsoon season and associated physical mechanisms are significantly important for accurate forecast of short-time and extreme precipitation. The diurnal cycle of CSs is investigated using ground-based X-band radar, Tropical Rainfall Measuring Mission Precipitation Radar, and reanalysis data during the summer monsoon (June–September of 2014) over complex mountain terrain of Western Ghats, India. Diurnally, CSs show a bimodal distribution in the coastal areas, but this bimodality became weak along the upslope regions and on the mountain top. The first occurrence mode of CSs is in the afternoon–evening hours, while the second peak is in the early-morning hours. The diurnal cycle’s intensity varies with location, such that it reaches maximum in the afternoon–evening hours and early morning on the mountain top and coastal areas, respectively. Two possible mechanisms are proposed for the observed diurnal variation in CSs (a) the radiative cooling effect and (b) the surface wind convergence induced by the interaction between land-sea breeze, local topography and large-scale monsoon winds. It is also observed that the CSs developed on the mountain top during afternoon–evening hours are deeper than those along the coast. The higher moisture in the lower- and mid-troposphere, higher instability and strong upward motion facilitate deeper CSs during afternoon–evening hours.


2018 ◽  
Vol 57 (6) ◽  
pp. 1385-1402 ◽  
Author(s):  
Xiuzhen Li ◽  
Ngar-Cheung Lau ◽  
Tsz-Cheung Lee

AbstractHourly rainfall from automatic weather stations and reanalysis data from MERRA-2 are used to investigate the diurnal variation of precipitation in Hong Kong, a site along the southeast China coast with strong interactions between the monsoonal circulation and the land–sea breeze. The precipitation in Hong Kong is characterized by a spatially uniform diurnal cycle with the peak at about 0800 local time (LT), with rather weak dependence on local terrain. Precipitation unrelated to tropical cyclones (TCs) dominates the diurnal variation of precipitation, especially in the summer. The diurnal cycle exhibits a notable seasonal dependence, with the strongest signal in the summer. The morning peak of precipitation over Hong Kong is coincident with deep rising motion, linking to near-surface convergence and overlying weak divergence. The convergence may be attributed to the prevalence of the southerly monsoonal flow over the South China Sea (SCS) and to the northerly land breeze induced by the land–sea thermal contrast in the morning. The overlying weak divergence could be ascribed to the nocturnal–early morning acceleration of southerly flow over southeast China. Linked to the inverse relationship between monsoon intensity and the land–sea thermal contrast, the diurnal cycle of precipitation is strengthened when the SCS monsoon is active and weakened when the land–sea thermal contrast is high. Both the cloud-top radiative cooling effect and the enhanced radiative cooling over inland cloud-free areas also play roles in the development of the morning rainfall peak over Hong Kong.


2017 ◽  
Vol 56 (6) ◽  
pp. 1537-1550 ◽  
Author(s):  
Jian Li ◽  
Tianru Chen ◽  
Nina Li

AbstractThe climatic features of the diurnally varying summer precipitation over and around the central Tian Shan Mountains are investigated. Both the hourly rainfall data observed at eight stations along a transect across the mountains and the convective index derived from the satellite data show that there are three distinct regimes: the early morning peak at stations to the south of the mountains, the late afternoon peak at stations on the mountains, and the night peak at stations to the north of the mountains. The relation between regimes of diurnal variation is analyzed. By defining the regional rainfall event (RRE), the initial stations of each RRE are recorded. The early morning rainfall in the southern periphery of the mountains is triggered locally in the southern basin. Both the late afternoon peak over the mountains and the night peak in the northern periphery are influenced by mountain-originated rainfall events. These rainfall events appear over the mountains in the afternoon, and some of them move northward and lead to the nocturnal rainfall in the northern basin. The triggering of convection in the afternoon over the mountains and that in the early morning in the southern basin is related to the diurnally varying wind and thermodynamic conditions over and around the mountains. Low-level convergence with thermodynamic instability appears at noon (night) over the mountains (in the southern basin) just before the start of the convection.


2021 ◽  
Author(s):  
Kaushal Raj Gnyawali ◽  
Dwayne D. Tannant ◽  
Yogesh Bhattarai ◽  
Rijan Jayana ◽  
Rocky Talchabhadel

<p>In the monsoon season, landslides are major disasters in Nepal, causing loss of life and economic impacts. The landslides triggered in the 2020 monsoon (June – September) in Nepal caused more than 300 fatalities and affected about 800 families. A spatial and temporal database of landslides in this region does not exist, which has hindered an understanding of landslide dynamics and the development of a regional early warning system (EWS). In this study, we prepare a time-stamped (hourly) geo-referenced database of the landslides triggered by the 2020 monsoon in Nepal and investigate their dynamic trends. We track landslides from online news for each day during the monsoon to map their location and time. The database contains 332 mapped landslides, out of which accurate time stamps are available for 126 landslides. The spatial pattern shows a large concentration of landslides in central Nepal (districts of Parbat, Kaski, Myagdi, Baglung, Gulmi, and Syangja). The temporal pattern reveals that landslides in this region occur mostly during late night or early morning. We estimate hourly rainfall thresholds for landslide occurrence from the Integrated Multi-satellitE Retrievals for GPM (IMERG) rainfall product. The database and analysis provide a basis for estimating regional rainfall thresholds for Nepal and the design of an EWS.</p>


2016 ◽  
Vol 16 (1) ◽  
pp. 161-175 ◽  
Author(s):  
M. E. E. Hassim ◽  
T. P. Lane ◽  
W. W. Grabowski

Abstract. In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore-propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea.In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore-propagating convection have more middle tropospheric moisture, larger convective available potential energy, and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation.The offshore-propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes reorganised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at  ∼ 5 ms−1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of  ∼ 15 ms−1) and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity wave does not appear to initiate the convection or control its propagation, it should contribute to its longevity and maintenance. The results highlight the importance of terrain and coastal effects along with gravity waves in contributing to the diurnal cycle over the Maritime Continent, especially the offshore precipitation maxima adjacent to quasi-linear coastlines.


2017 ◽  
Author(s):  
Lei Zhu ◽  
Zhiyong Meng ◽  
Fuqing Zhang ◽  
Paul M. Markowski

Abstract. This study examines the diurnal variation of precipitation over Hainan Island in the South China Sea using gauge observations from 1950 to 2010 and CMORPH satellite estimates from 2006 to 2015, as well as numerical simulations. Precipitation is most significant from April to October, and exhibits a strong diurnal cycle resulting from land/sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle, with a significant monthly variability as well. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimates precipitation and has a 1-h delay of peaks. The diurnal cycle of the rainfall and the related land/sea breeze circulations during May and June were well captured by convection-allowing numerical simulations with WRF, which were initiated from 10-year average ERA-interim reanalysis, despite slightly overall overestimation and 1-h delay of the rainfall peak. The diurnal precipitation is due to a diurnal cycle of moist convection, which initiates around noontime owing to low-level convergence associated with the sea breeze circulation. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. The precipitation dissipates quickly in the evening owing to the cooling and stabilization of the lower troposphere and decrease of boundary-layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation of the precipitation over the island.


2017 ◽  
Vol 12 (1) ◽  
pp. 89-96 ◽  
Author(s):  
S.I Sridhar ◽  
A Raviraj

The present study aims to detect the trends in annual and seasonal rainfall and its magnitude in Amaravathi basin, Tamil Nadu. In this study, the mean annual and seasonal rainfall in 10 rain gauge stations of Amaravathi basin have been analysed to determine the trend and its magnitude for the period of 1982-2014. The trend analysis is done using Mann-Kendall and Sen’s slope estimator. The trend analysis results showed wide variations during all the seasons. The increasing trend of rainfall is found to be dominant during north-east monsoon season when compared to other seasons.


2015 ◽  
Vol 15 (2) ◽  
pp. 57-64 ◽  
Author(s):  
Dibas Shrestha ◽  
Rashila Deshar

The Central Himalayan Region (Nepal Himalayas), comprised of two clear sub-parallel mountain ranges, is atypical location for studying the impact of rugged topography on spatio temporal variations of precipitation. The relationship between topography and diurnal cycles of rainfall have been investigated utilizing 13-year (1998–2010) high resolution (0.05° × 0.05°) Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. An investigation of diurnal cycle of precipitation revealed an afternoon maximum during the pre-monsoon season (March–May) and midnight–early morning maximum during the summer monsoon season (June–August)over the southern slopes of the Himalayas. The summer monsoon exhibited a robust spatial variation of diurnal cycle of precipitation, during afternoon-evening time, primary rainfall peak appeared along the Lesser Himalayas (~2,000–2,200 m above mean sea level), while early-morning rain in contrast showed maximum concentration along the southern margin of the Himalayas (~500–700 m above MSL). An afternoon-evening rainfall peak was attributed to higher rain frequency, whereas early-morning rainfall peak was attributed to fewer but rather intense rainfall. It is suggested that, confluence between down slope and moist south easterly monsoon flow triggers convection near the foothills of the Himalayas during early morning period. The results further suggested the morning precipitation moves southward in the mature monsoon season.DOI: http://dx.doi.org/njst.v15i2.12116Nepal Journal of Science and Technology Vol. 15, No.2 (2014), 57-64


2017 ◽  
Vol 17 (21) ◽  
pp. 13213-13232 ◽  
Author(s):  
Lei Zhu ◽  
Zhiyong Meng ◽  
Fuqing Zhang ◽  
Paul M. Markowski

Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island.


2015 ◽  
Vol 15 (13) ◽  
pp. 18327-18363 ◽  
Author(s):  
M. E. E. Hassim ◽  
T. P. Lane ◽  
W. W. Grabowski

Abstract. In this study, we examine the diurnal cycle of rainfall over New Guinea using a series of convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model. We focus our simulations on a period of suppressed regional-scale conditions (February 2010) during which local diurnal forcings are maximised. Additionally, we focus our study on the occurrence and dynamics of offshore propagating convective systems that contribute to the observed early-morning rainfall maximum north-east of New Guinea. In general, modelled diurnal precipitation shows good agreement with satellite-observed rainfall, albeit with some timing and intensity differences. The simulations also reproduce the occurrence and variability of overnight convection that propagate offshore as organised squall lines north-east of New Guinea. The occurrence of these offshore systems is largely controlled by background conditions. Days with offshore propagating convection have more middle tropospheric moisture, larger CAPE and greater low-level moisture convergence. Convection has similar characteristics over the terrain on days with and without offshore propagation. The offshore propagating convection manifests via a multi-stage evolutionary process. First, scattered convection over land, which is remnant of the daytime maximum, moves towards the coast and becomes re-organised near the region of coastal convergence associated with the land breeze. The convection then moves offshore in the form of a squall line at ~5 m s−1. In addition, cool anomalies associated with gravity waves generated by precipitating land convection propagate offshore at a dry hydrostatic gravity wave speed (of ~15 m s−1), and act to destabilise the coastal/offshore environment prior to the arrival of the squall line. Although the gravity wave does not appear to initiate the convection or control its propagation, it should contribute to its longevity and maintenance. The results highlight the importance of terrain and coastal effects along with gravity waves in contributing to the diurnal cycle over the Maritime Continent, especially the offshore precipitation maxima adjacent to quasi-linear coastlines.


Sign in / Sign up

Export Citation Format

Share Document