scholarly journals Spatial Variations in the Diurnal Pattern of Precipitation over Nepal Himalayas

2015 ◽  
Vol 15 (2) ◽  
pp. 57-64 ◽  
Author(s):  
Dibas Shrestha ◽  
Rashila Deshar

The Central Himalayan Region (Nepal Himalayas), comprised of two clear sub-parallel mountain ranges, is atypical location for studying the impact of rugged topography on spatio temporal variations of precipitation. The relationship between topography and diurnal cycles of rainfall have been investigated utilizing 13-year (1998–2010) high resolution (0.05° × 0.05°) Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. An investigation of diurnal cycle of precipitation revealed an afternoon maximum during the pre-monsoon season (March–May) and midnight–early morning maximum during the summer monsoon season (June–August)over the southern slopes of the Himalayas. The summer monsoon exhibited a robust spatial variation of diurnal cycle of precipitation, during afternoon-evening time, primary rainfall peak appeared along the Lesser Himalayas (~2,000–2,200 m above mean sea level), while early-morning rain in contrast showed maximum concentration along the southern margin of the Himalayas (~500–700 m above MSL). An afternoon-evening rainfall peak was attributed to higher rain frequency, whereas early-morning rainfall peak was attributed to fewer but rather intense rainfall. It is suggested that, confluence between down slope and moist south easterly monsoon flow triggers convection near the foothills of the Himalayas during early morning period. The results further suggested the morning precipitation moves southward in the mature monsoon season.DOI: http://dx.doi.org/njst.v15i2.12116Nepal Journal of Science and Technology Vol. 15, No.2 (2014), 57-64

MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 289-308
Author(s):  
D. R. KOTHAWALE ◽  
K. RUPA KUMAR

In the context of the ever increasing interest in the regional aspects of global warming, understanding the spatio-temporal variations of tropospheric temperature over India is of great importance. The present study, based on the data from 19 well distributed radiosonde stations for the period 1971-2000, examines the seasonal and annual mean temperature variations at the surface and five selected upper levels, viz., 850, 700, 500, 200 and 150 hPa. An attempt has also been made to bring out the association between tropospheric temperature variations over India and the summer monsoon variability, including the role of its major teleconnection parameter, the El Niño/Southern Oscillation (ENSO).   Seasonal and annual mean all-India temperature series are analyzed for surface and five tropospheric levels.  The mean annual cycles of temperature at different tropospheric levels indicate that the pre-monsoon season is slightly warmer than the monsoon season at the surface, 850 hPa and 150 hPa levels, while it is relatively cooler at all intermediate levels.  The mean annual temperature shows a warming of 0.18° C and 0.3° C per 10 years at the surface and 850 hPa, respectively.   Tropospheric temperature anomaly composites of excess (deficient) monsoon rainfall years show pronounced positive (negative) anomalies during the month of May, at all the levels.  The pre-monsoon pressure of Darwin has significant positive correlation with the monsoon temperature at the surface and 850 hPa.


2021 ◽  
pp. 1-58
Author(s):  
Daniel Watters ◽  
Alessandro Battaglia ◽  
Richard P. Allan

AbstractNASA Precipitation Measurement Mission observations are used to evaluate the diurnal cycle of precipitation from three CMIP6 models (NCAR-CESM2, CNRM-CM6-1, CNRM-ESM2-1) and the ERA5 reanalysis. NASA’s global-gridded IMERG product, which combines spaceborne microwave radiometer, infrared sensor and ground-based gauge measurements, provides high spatio-temporal resolution (0.1°, half-hourly) estimates that are suitable for evaluating the diurnal cycle in models, as determined against the CONUS ground-based radar network. IMERG estimates are coarsened to the spatial and hourly resolution of the state-of-the-art CMIP6 and ERA5 products, and their diurnal cycles are compared across multiple decades of June-July-August in the 60°N–S domain (IMERG and ERA5: 2000–2019; NCAR and CNRM: 1979–2008). Low precipitation regions (and weak amplitude regions when analyzing the diurnal phase) are excluded from analyses in order to assess only robust diurnal signals. Observations identify greater diurnal amplitudes over land (26–134% of the precipitation mean; 5th–95th percentile) than over ocean (14–66%). ERA5, NCAR and CNRM underestimate amplitudes over ocean, whilst ERA5 overestimates over land. IMERG observes a distinct diurnal cycle only in certain regions, with precipitation peaking broadly between 14–21 LST over land (21–6 LST over mountainous and varying-terrain regions) and 0–12 LST over ocean. The simulated diurnal cycle is unrealistically early compared with observations, particularly over land (NCAR-CESM2-AMIP: –1 hour; ERA5: –2 hours; CNRM-CM6-1-AMIP: –4 hours on average) with nocturnal maxima not well represented over mountainous regions. Furthermore, ERA5’s representation of the diurnal cycle is too simplified, with less interannual variability in the time of maximum compared to observations over many regions.


2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Ya-Hui Chang ◽  
Cheng-An Lee

This study assesses the performance of satellite precipitation products (SPPs) from the latest version, V06B, Integrated Multi-satellitE Retrievals for Global Precipitation Mission (IMERG) Level-3 (including early, late, and final runs), in depicting the characteristics of typhoon season (July to October) rainfall over Taiwan within the period of 2000–2018. The early and late runs are near-real-time SPPs, while final run is post-real-time SPP adjusted by monthly rain gauge data. The latency of early, late, and final runs is approximately 4 h, 14 h, and 3.5 months, respectively, after the observation. Analyses focus on the seasonal mean, daily variation, and interannual variation of typhoon-related (TC) and non-typhoon-related (non-TC) rainfall. Using local rain-gauge observations as a reference for evaluation, our results show that all IMERG products capture the spatio-temporal variations of TC rainfall better than those of non-TC rainfall. Among SPPs, the final run performs better than the late run, which is slightly better than the early run for most of the features assessed for both TC and non-TC rainfall. Despite these differences, all IMERG products outperform the frequently used Tropical Rainfall Measuring Mission 3B42 v7 (TRMM7) for the illustration of the spatio-temporal characteristics of TC rainfall in Taiwan. In contrast, for the non-TC rainfall, the final run performs notably better relative to TRMM7, while the early and late runs showed only slight improvement. These findings highlight the advantages and disadvantages of using IMERG products for studying or monitoring typhoon season rainfall in Taiwan.


2019 ◽  
Vol 11 (15) ◽  
pp. 1781 ◽  
Author(s):  
Daniel Watters ◽  
Alessandro Battaglia

The Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation product derived from the Global Precipitation Measurement (GPM) constellation offers a unique opportunity of observing the diurnal cycle of precipitation in the latitudinal band 60 ° N–S at unprecedented 0.1 ° × 0.1 ° and half-hour resolution. The diurnal cycles of occurrence, intensity and accumulation are determined using four years of data at 2 ° × 2 ° resolution; this study focusses on summertime months when the diurnal cycle shows stronger features. Harmonics are fitted to the diurnal cycle using a non-linear least squares method weighted by random errors. Results suggest that mean-to-peak amplitudes for the diurnal cycles of occurrence and accumulation are greater over land (generally larger than 25% of the diurnal mean), where the diurnal harmonic dominates and peaks at ~16–24 LST, than over ocean (generally smaller than 25%), where the diurnal and semi-diurnal harmonics contribute comparably. Over ocean, the diurnal harmonic peaks at ~0–10 LST (~8–15 LST) over open waters (coastal waters). For intensity, amplitudes of the diurnal and semi-diurnal harmonics are generally comparable everywhere (~15–35%) with the diurnal harmonic peaking at ~20–4 LST (~3–12 LST) over land (ocean), and the semi-diurnal harmonic maximises at ~5–8 LST and 17–20 LST. The diurnal cycle of accumulation is dictated by occurrence as opposed to intensity.


2005 ◽  
Vol 133 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Matthew J. Haugland ◽  
Kenneth C. Crawford

Abstract This manuscript documents the impact of Oklahoma’s winter wheat belt (WWB) on the near-surface atmosphere by comparing the diurnal cycle of meteorological conditions within the WWB relative to conditions in adjacent counties before and after the wheat harvest. To isolate the impact of the winter wheat belt on the atmosphere, data from several meteorological parameters were averaged to create a diurnal cycle before and after the wheat harvest. Observations from 17 Oklahoma Mesonet sites within the WWB (during a period of 9 yr) were compared with observations from 22 Mesonet sites in adjacent counties outside the winter wheat belt. The average diurnal cycles of dewpoint, temperature, and surface pressure exhibited patterns that revealed a distinct mesoscale impact of the wheat fields. The diurnal patterns were consistent with the status of the wheat crop and the grassland in adjacent counties. The impact of the WWB was shown to be more significant during a month when soil moisture was abundant, and minimal during a month when soil moisture was limited. Statistically significant, hydrostatically consistent afternoon surface pressure anomalies suggest that there is a strong possibility of weak mesoscale circulations induced by the WWB.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 67-82
Author(s):  
J. R. KULKARNI ◽  
M. MUJUMDAR ◽  
S. P. GHARGE ◽  
V. SATYAN ◽  
G. B. PANT

Earlier investigations into the epochal behavior of fluctuations in All India Summer Monsoon Rainfall (AISMR) have indicated the existence of a Low Frequency Mode (LFM) in the 60-70 years range. One of the probable sources of this variability may be due to changes in solar irradiance. To investigate this, time series of 128-year solar irradiance data from 1871-1998 has been examined. The Wavelet Transform (WT) method is applied to extract the LFM from these time series, which show a very good correspondence. A case study has been carried out to test the sensitivity of AISMR to solar irradiance. The General Circulation Model (GCM) of the Center of Ocean-Land-Atmosphere (COLA) has been integrated in the control run (using the climatological value of solar constant i.e., 1365 Wm-2) and in the enhanced solar constant condition (enhanced by 10 Wm-2) for summer monsoon season of 1986. The study shows that the large scale atmospheric circulation over the Indian region, in the enhanced solar constant scenario is favorable to good monsoon activity. A conceptual model for the impact of solar irradiance on the AISMR at LFM is also suggested.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ashwin Aravindakshan ◽  
Jörn Boehnke ◽  
Ehsan Gholami ◽  
Ashutosh Nayak

AbstractTo contain the COVID-19 pandemic, governments introduced strict Non-Pharmaceutical Interventions (NPI) that restricted movement, public gatherings, national and international travel, and shut down large parts of the economy. Yet, the impact of the enforcement and subsequent loosening of these policies on the spread of COVID-19 is not well understood. Accordingly, we measure the impact of NPIs on mitigating disease spread by exploiting the spatio-temporal variations in policy measures across the 16 states of Germany. While this quasi-experiment does not allow for causal identification, each policy’s effect on reducing disease spread provides meaningful insights. We adapt the Susceptible–Exposed–Infected–Recovered model for disease propagation to include data on daily confirmed cases, interstate movement, and social distancing. By combining the model with measures of policy contributions on mobility reduction, we forecast scenarios for relaxing various types of NPIs. Our model finds that in Germany policies that mandated contact restrictions (e.g., movement in public space limited to two persons or people co-living), closure of educational institutions (e.g., schools), and retail outlet closures are associated with the sharpest drops in movement within and across states. Contact restrictions appear to be most effective at lowering COVID-19 cases, while border closures appear to have only minimal effects at mitigating the spread of the disease, even though cross-border travel might have played a role in seeding the disease in the population. We believe that a deeper understanding of the policy effects on mitigating the spread of COVID-19 allows a more accurate forecast of disease spread when NPIs are partially loosened and gives policymakers better data for making informed decisions.


2020 ◽  
Vol 25 (2) ◽  
pp. 17-24
Author(s):  
Nitesh Khadka ◽  
Nitesh Khadka ◽  
Shravan Kumar Ghimire ◽  
Xiaoqing Chen ◽  
Sudeep Thakuri ◽  
...  

Snow is one of the main components of the cryosphere and plays a vital role in the hydrology and regulating climate. This study presents the dynamics of maximum snow cover area (SCA) and snow line altitude (SLA) across the Western, Central, and Eastern Nepal using improved Moderate Resolution Imaging Spectroradiometer (MODIS; 500 m) data from 2003 to 2018. The results showed a heterogeneous behavior of the spatial and temporal variations of SCA in different months, seasons, and elevation zones across three regions of Nepal. Further, the maximum and minimum SCA was observed in winter (December-February) and post-monsoon (October-November) seasons, respectively. The inter-annual variation of winter SCA showed an overall negative trend of SCA between 2003 to 2018 at the national and regional scales. The SLA was assessed in the post-monsoon season. At the national scale, the SLA lies in an elevation zone of 4500-5000 m, and the approximate SLA of Nepal was 4750 m in 2018. Regionally, the SLA lies in an elevation zone of 4500-5000 m in the Western and Central regions (approx. SLA at 4750 m) and 5000-5500 m in the Eastern region (approx. SLA at 5250 m) in 2018. The SLA fluctuated with the changes in SCA, and the spatio-temporal variations of SLAs were observed in three regions of Nepal. We observed an upward shift of SLA by 33.3 m yr-1 in the Western and Central Nepal and by 66.7 m yr-1 in Eastern Nepal. This study will help to understand the impacts of climate change on snow cover, and the information will be useful for the hydrologist and water resource managers.


Sign in / Sign up

Export Citation Format

Share Document