scholarly journals Reaction Mechanism and Crystal Structure of 4-.ALPHA.-Glucanotransferase from a Hyperthermophilic Archaeon, Thermococcus litoralis.

2001 ◽  
Vol 48 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Hiromi Imamura ◽  
Shinya Fushinobu ◽  
Masaki Yamamoto ◽  
Takashi Kumasaka ◽  
Takayoshi Wakagi ◽  
...  
2001 ◽  
Vol 305 (4) ◽  
pp. 905-915 ◽  
Author(s):  
Joachim Diez ◽  
Kay Diederichs ◽  
Gerhard Greller ◽  
Reinhold Horlacher ◽  
Winfried Boos ◽  
...  

Author(s):  
Ryushi Kawakami ◽  
Chinatsu Kinoshita ◽  
Tomoki Kawase ◽  
Mikio Sato ◽  
Junji Hayashi ◽  
...  

Abstract The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5ʹ-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by co-expression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and non-substrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


1994 ◽  
Vol 116 (15) ◽  
pp. 6841-6849 ◽  
Author(s):  
Antonio Donaire ◽  
Carol M. Gorst ◽  
Z. H. Zhou ◽  
Michael W. W. Adams ◽  
Gerd N. La Mar

2014 ◽  
Vol 70 (12) ◽  
pp. 3212-3225 ◽  
Author(s):  
Tiila-Riikka Kiema ◽  
Rajesh K. Harijan ◽  
Malgorzata Strozyk ◽  
Toshiyuki Fukao ◽  
Stefan E. H. Alexson ◽  
...  

Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of theZoogloea ramigerabiosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2–Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.


2006 ◽  
Vol 15 (6) ◽  
pp. 1516-1521 ◽  
Author(s):  
Sophie Quevillon-Cheruel ◽  
Nicolas Leulliot ◽  
Marc Graille ◽  
Karine Blondeau ◽  
Joel Janin ◽  
...  

1996 ◽  
Vol 178 (16) ◽  
pp. 4773-4777 ◽  
Author(s):  
K B Xavier ◽  
L O Martins ◽  
R Peist ◽  
M Kossmann ◽  
W Boos ◽  
...  

1998 ◽  
Vol 180 (3) ◽  
pp. 680-689 ◽  
Author(s):  
Reinhold Horlacher ◽  
Karina B. Xavier ◽  
Helena Santos ◽  
Jocelyne DiRuggiero ◽  
Marina Kossmann ◽  
...  

ABSTRACT We report the cloning and sequencing of a gene cluster encoding a maltose/trehalose transport system of the hyperthermophilic archaeonThermococcus litoralis that is homologous to themalEFG cluster encoding the Escherichia colimaltose transport system. The deduced amino acid sequence of themalE product, the trehalose/maltose-binding protein (TMBP), shows at its N terminus a signal sequence typical for bacterial secreted proteins containing a glyceride lipid modification at the N-terminal cysteine. The T. litoralis malE gene was expressed in E. coli under control of an inducible promoter with and without its natural signal sequence. In addition, in one construct the endogenous signal sequence was replaced by the E. coli MalE signal sequence. The secreted, soluble recombinant protein was analyzed for its binding activity towards trehalose and maltose. The protein bound both sugars at 85°C with aKd of 0.16 μM. Antibodies raised against the recombinant soluble TMBP recognized the detergent-soluble TMBP isolated from T. litoralis membranes as well as the products from all other DNA constructs expressed in E. coli. Transmembrane segments 1 and 2 as well as the N-terminal portion of the large periplasmic loop of the E. coli MalF protein are missing in the T. litoralis MalF. MalG is homologous throughout the entire sequence, including the six transmembrane segments. The conserved EAA loop is present in both proteins. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the binding protein-dependent ABC transport systems in these two phylogenetic branches.


Sign in / Sign up

Export Citation Format

Share Document