Performance based design of buildings to assess damage and downtime and implement a rating system

Author(s):  
Ronald Mayes ◽  
Nicholas Wetzel ◽  
Ben Weaver ◽  
Ken Tam ◽  
Will Parker ◽  
...  

The Christchurch earthquakes have highlighted the mismatch in expectations between the engineering profession and society regarding the seismic performance of buildings. While most modern buildings performed as expected, many buildings have been, or are to be, demolished. The ownership, occupancy, and societal costs of only targeting life-safety as the accepted performance standard for building design are now apparent in New Zealand. While the structural system has a significant effect on the seismic performance of the entire building, including the contents, it is only about 20% of the total building cost. Hence, structural engineers should view the seismic performance in a wider context, looking at all the systems of the building rather than just the damage to structural items and life-safety. The next generation of performance-based seismic design procedures, outlined in the FEMA P-58 document, provide engineers with the tools to express the seismic performance of the entire building in terms of the future life loss, facility repair cost and repair time. This paper will outline the FEMA P-58 procedure and present the results of a comparative study of six different structural systems for a three storey commercial and laboratory building: moment frame; buckling restrained braced frame; viscously damped moment frame; Pres-Lam timber coupled-walls; cast-in-place reinforced concrete shear wall; and base isolated braced frame. Each system was analysed as a fully non-linear structure and the calculated drifts and floor accelerations were input into the FEMA P-58 PACT tool to evaluate the overall building performance. The PACT tool performs loss calculations for the expected casualties, repair cost, and repair time from which a QuakeStar or SEAONC rating for the building can be obtained.

1999 ◽  
Vol 26 (4) ◽  
pp. 379-394 ◽  
Author(s):  
M S Medhekar ◽  
DJL Kennedy

The seismic performance of single-storey steel buildings, with concentrically braced frames and a roof diaphragm that acts structurally, is evaluated. The buildings are designed in accordance with the National Building Code of Canada 1995 and CSA Standard S16.1-94 for five seismic zones in western Canada with seismicities ranging from low to high. Only frames designed with a force modification factor of 1.5 are considered. Analytical models of the building are developed, which consider the nonlinear seismic behaviour of the concentrically braced frame, the strength and stiffness contributions of the cladding, and the flexibility, strength, and distributed mass of the roof diaphragm. The seismic response of the models is assessed by means of a linear static analysis, a response spectrum analysis, a nonlinear static or "pushover" analysis, and nonlinear dynamic time history analyses. The results indicate that current design procedures provide a reasonable estimate of the drift and brace ductility demand, but do not ensure that yielding is restricted to the braces. Moreover, in moderate and high seismic zones, the roof diaphragm responds inelastically and brace connections are overloaded. Recommendations are made to improve the seismic performance of such buildings.Key words: analyses, concentrically braced frame, dynamic, earthquake, flexible diaphragm, low-rise, nonlinear, seismic design, steel.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1910-1916
Author(s):  
Maria Ntina ◽  
Dimitrios Sophianopoulos

2021 ◽  
Vol 1 (2) ◽  

The need to satisfy high seismic performance of structures and to comply with the latest worldwide policies of environmental sustainability is leading engineers and researchers to higher interest in timber buildings. A post-tensioned timber frame specimen was tested at the structural laboratory of the University of Basilicata in Italy, in three different configurations: i) without dissipation (post-tensioning only-F configuration); ii) with dissipative angles (DF- dissipative rocking configuration) and iii) with dissipative bracing systems (BF - braced frame configuration). The shaking table tests were performed considering a set of spectra-compatible seismic inputs at different seismic intensities. This paper describes the experimental estimation of energy dissipated by multistorey post-tensioned timber prototype frame with different anti-seismic hysteretic dissipative devices used in the DF and BF testing configurations. The main experimental seismic key parameters have also been investigated in all testing configurations.


2021 ◽  
pp. 875529302110478
Author(s):  
Payal Gwalani ◽  
Yogendra Singh ◽  
Humberto Varum

The existing practice to estimate seismic performance of a regular building is to carry out nonlinear time history analysis using two-dimensional models subjected to unidirectional excitations, even though the multiple components of ground motion can affect the seismic response, significantly. During seismic shaking, columns are invariably subjected to bending in two orthogonal vertical planes, which leads to a complex interaction of axial force with the biaxial bending moments. This article compares the seismic performance of regular and symmetric RC moment frame buildings for unidirectional and bidirectional ground motions. The buildings are designed and detailed according to the Indian codes, which are at par with the other modern seismic codes. A fiber-hinge model, duly calibrated with the biaxial experimental results, is utilized to simulate the inelastic behavior of columns under bidirectional bending. A comparison of the estimated seismic collapse capacity is presented, illustrating the importance of considering the bidirectional effects. The results from fragility analysis indicate that the failure probabilities of buildings under the bidirectional excitation are significantly higher as compared to those obtained under the unidirectional excitation.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


Sign in / Sign up

Export Citation Format

Share Document