scholarly journals Evaluation of fragility functions with potential relevance for use in New Zealand

Author(s):  
Trevor Z. Yeow ◽  
Timothy J. Sullivan ◽  
Kenneth J. Elwood

One barrier to adopting seismic loss estimation frameworks in New Zealand engineering practice is the lack of relevant fragility functions which provide probabilities of exceeding certain levels of damage (e.g. cracking of gypsum wallboards) for a given demand (e.g. interstorey drifts). This study seeks to address this need for four different building components; interior full-height steel-framed plasterboard partition walls, unbraced suspended ceilings, precast concrete cladding, and steel beam-column joints with extended bolted end-plate connections. Fragility functions were sourced from literature, and their potential for use in New Zealand is evaluated considering similarities in component detailing with local practices. Modifications to a number of fragility functions, including generalizations for easier adoption in practice, are proposed. A loss estimation case study of a 4-storey steel moment-resisting frame is performed to investigate the significance of fragility function selection. It is shown that the definition of damage states can have a noticeable influence on the assessment of incurred repair cost of individual building components. This indicates that fragility functions should be carefully selected, particularly if the performance evaluation of each individual component is of utmost importance. However, the observed difference in expected annual repair cost of the entire building was small, indicating that in cases where fragility functions are not readily applicable for use in New Zealand, other fragility functions may be used as placeholders without drastically altering the outcome of loss analysis for the entire building.

Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 345-367
Author(s):  
Heather M. Craig ◽  
Thomas M. Wilson ◽  
Christina Magill ◽  
Carol Stewart ◽  
Alec J. Wild

Developing approaches to assess the impact of tephra fall to agricultural and forestry systems is essential for informing effective disaster risk management strategies. Fragility functions are commonly used as the vulnerability model within a loss assessment framework and represent the relationship between a given hazard intensity measure (e.g., tephra thickness) and the probability of impacts occurring. Impacts are represented here using an impact state (IS), which categorises qualitative and quantitative statements into a numeric scale. This study presents IS schemes for pastoral, horticultural, and forestry systems, and a suite of fragility functions estimating the probability of each IS occurring for 13 sub-sectors. Temporal vulnerability is accounted for by a ‘seasonality coefficient,’ and a ‘chemical toxicity coefficient’ is included to incorporate the increased vulnerability of pastoral farming systems when tephra is high in fluoride. The fragility functions are then used to demonstrate a deterministic impact assessment with current New Zealand exposure.


Author(s):  
Ponpong Chunhaviriyakul ◽  
Gregory A. MacRae ◽  
Dave Anderson ◽  
G. Charles Clifton ◽  
Roberto T. Leon

Composite steel-concrete construction uses steel and concrete together to provide the possibility of a system with better performance, and/or lower cost, than using either material alone. This paper firstly subjectively evaluates the advantages and disadvantages of a number of composite concrete filled tubular (CFT) column-connection systems proposed/used around the world in terms of their likely acceptance in moment frames in New Zealand. Then, the cost of a conventional one-way moment-resisting steel frame system is compared with a similarly behaving frame using rectangular concrete filled steel tubular (CFT) columns. It is shown for these studies conducted on one-way frames that composite CFT column construction with beam end-plate connections is generally more expensive than conventional steel column construction.


Author(s):  
Shreedhar Khakurel ◽  
Trevor Z. Yeow ◽  
Frankie Chen ◽  
Zam Wang ◽  
Sandip K. Saha ◽  
...  

One method to rapidly estimate seismic losses during the structural design phase is to use contribution functions. These are relationships between expected losses (e.g. damage repair costs, downtime, and injury) for a wide range of building components (e.g. cladding, partitions, and ceilings) and the building’s response. This study aims to develop contribution functions for common types of cladding used in different types of buildings considering damage repair costs. In the first part of this study, a building survey was performed to identify types and quantity of cladding used in residential, commercial and industrial buildings in Christchurch, New Zealand; where it was found that the most common cladding types are glazing, masonry veneer, monolithic cladding and precast panels. The data collected during the survey was also used to develop cladding distribution (i.e. density) functions. The second step involved identifying fragility functions from relevant literature which are applicable to the cladding detailing used in New Zealand. The third step involved surveying consultants, suppliers and builders on typical repair/replacement cost. Finally, Monte Carlo simulations were performed to combine the cladding density function with the fragility functions and the repair cost for each type of cladding to derive contribution functions for various types of cladding and building usage. An example (case study) is provided to demonstrate its usage.


PCI Journal ◽  
1992 ◽  
Vol 37 (5) ◽  
pp. 80-92 ◽  
Author(s):  
Regina Gaiotti ◽  
Bryan Stafford Smith

2021 ◽  
Vol 246 ◽  
pp. 113005
Author(s):  
Eray Baran ◽  
Mustafa Mahamid ◽  
Mehmet Baran ◽  
Metin Kurtoglu ◽  
Ines Torra-Bilal

2010 ◽  
Vol 163-167 ◽  
pp. 591-595
Author(s):  
Jing Feng Wang ◽  
Xin Yi Chen ◽  
Lin Hai Han

This paper studies structural behaviour of the blind bolted connections to concrete-filled steel tubular columns by a serial of experimental programs, which conducted involving eight sub-assemblages of cruciform beam-to-column joints subjected to monotonic loading and cyclic loading. The moment-rotation hysteretic relationships and failure models of the end plate connections have been measured and analyzed. A simplified analysis model for the blind bolted connections is proposed based on the component method. It is concluded that the blind bolted end plate connection has reasonable strength and stiffness, whilst the rotation capacity of the connection satisfies the ductility requirements for earthquake-resistance in most aseismic regions. This typed joint has excellent seismic performance, so it can be used in the moment-resisting composite frame.


2019 ◽  
Vol 13 (1) ◽  
pp. 271-280
Author(s):  
Azadeh Khoshkroodi ◽  
Hossein Parvini Sani

Aims: The aim of the present paper is to evaluate the behavior of slit friction hybrid dampers (SFHD) on steel structures. Therefore, the behavior moment resisting steel frames of structures in original stats and structures equipped with hybrid damper with two different types of behavior was analyzed and evaluated. Background: The recent study evaluated the combined effect of shear-friction dampers and slit dampers with measurements of non-uniform strips in seismic protection for different levels of energy. The recent study was carried out a about hybrid dampers, consisting of friction and split dampers in response to small and large earthquakes. Previous results have shown the ability of inactive hybrid systems in improving the reaction of structures to traditional lateral-systems. Kim and Shin showed that structures consisted of hybrid dampers needed less repair cost and time. Methods: Pushover and time history were carried out on original structures and structures equipped with dampers, in 5 and 10 stories structures. Results: Analysis about the probability of collapse showed about 30% and 84%. Conclusion: According to the result, by adding the SFHD, increased stiffness by 17% in retrofitted structures such as drift and displacement of roof decreases by 27% and 20% in push over analysis, respectively. Also, displacement in time history analysis up to 55% reduces in average. Also, the results of the IDA show that adding the SFHD to structures significantly increases by 55% the spectral acceleration capacity in structures.


1991 ◽  
Vol 18 (4) ◽  
pp. 690-710
Author(s):  
Hany Ahmed El-Ghazaly ◽  
Heyad Saud Al-Zamel

A new detail is introduced for precast concrete beam-to-column moment connections. The detail consists of a connecting steel frame used to mechanically connect the threaded end protruding reinforcing bars from beam and column. The connection detail is made convenient to assemble where the erection method resembles that of steel construction. No idle crane time is necessary, since the connecting steel frame is designed to carry the beam's own weight. When the connection construction is completed, the joint functions as a moment resisting hard connection. The experimental testing program involved testing of twelve full-scale specimens in addition to a pilot test. Of the twelve tests seven are flexural tests, three are shear tests, and two are monolithic flexural tests for comparison. Modes of failure in the flexural tests were mainly due to rupture of tension reinforcement; however, premature slippage of the rebars may occur under certain conditions, but could be conveniently prevented. In the shear tests, diagonal tension crack failure predominated. If the connection parameters are properly selected, the connection will be capable of developing the beam's full plastic moment and undergo sufficient rotation before collapse. Key words: precast concrete, moment connections, connecting steel frame, stiffness, strength, ductility.


2017 ◽  
Vol 259 ◽  
pp. 173-177
Author(s):  
Arthur L. Rocha ◽  
Marcelo de A. Ferreira ◽  
Wilian dos S. Morais ◽  
Bruna Catoia

Precast structures for multi-storey buildings can be designed with economy, safety and high performance. However, depending on the height of the building and the intensity of the lateral loads, the lateral stability system must be carefully chosen in order to maximize the global structural performance. In Brazil, the most common method for lateral stability is achieved by moment resisting precast-frames, wherein the moment-rotation response of the beam-column connections are responsible to provide the frame action, which will govern the distribution of internal forces and the sway distribution along the building height. On the other hand, in Europe, bracing systems comprised by shear walls or infill walls are mostly used, wherein beam-column connections are designed as hinged. The aim of this paper is to present a comparison between these methods for lateral stability, applying nine structural simulations with moment resisting precast-frames, shear walls and infill walls solutions, divided in three groups - 3 building with 5 storeys (21 meters high), 3 buildings with 10 storeys (41 meters high) and 3 building with 20 storeys (81 meters high). All first storeys are 5 meters high, while all the others are 4 meters high. The results from all structural analyses are compared. As conclusion, while moment-resisting beam-column connections are more feasible for applying in low-rise precast buildings, the use of shear walls and infill walls are more efficient for tall buildings due to decrease of lateral displacements, having a reduction of second order effects but also increasing the reactions at the foundations of bracing elements.


Sign in / Sign up

Export Citation Format

Share Document