scholarly journals The Prebiotic Stage and the Evolution of Life on Earth

2019 ◽  
Vol 9 (2) ◽  
pp. 86
Author(s):  
Gogu Ghiorghita ◽  
Gheorghe Surpateanu

The paper is a synthesis of the information collected so far on the origin and evolution of life on Earth. The life appearance and its evolution is correlated to matter evolution in univers: Big Bang, inorganic, organic, prebiotic, unicellular and multicellular stages. Concerning prebiotic stage in life evolution we present our theory based on syntone chemistry. Three syntones-methylene, nitrene and carbon monoxid carried by molecular nitrogen at law temperature could furnish the prebiotic bricks (sugars, lipids, proteins) at the contact to primary atmosphere components. Also, we think that these syntones could be considered as sources of great number of organic molecules. All organisms on Earth descend from a last universal common ancestor (LUCA). Two branches were derived from LUCA: one led to bacteria and the other to archaea and eukaryotes. The appearance of photosynthesis determined a transition from the oxygen-free atmosphere to the oxic atmosphere. Due to a series of endosymbioses, Eukaryotes emerged as organisms with nucleated cells and aerobic metabolism (which significantly increased the efficiency of cellular energy production). At about the same time appeared the first multicellular organisms. The paper also presents other important moments in the evolution of life on Earth, including the major biological crises in certain periods, resulting in the mass extinction of some groups of organisms. The evolution of the living world on Earth culminated with the emergence of man, the most complex being with language, superior thinking, emotions, creativity, etc.

2019 ◽  
Author(s):  
Isabela Jerônimo Bezerra do Ó ◽  
Thais Gaudêncio Rego ◽  
Marco V. José ◽  
Sávio Torres de Farias

AbstractComprehending the constitution of early biological metabolism is indispensable for the understanding of the origin and evolution of life on Earth. Here, we analyzed the structural proteome before the Last Universal Common Ancestor (LUCA) based in the reconstruction of the ancestral sequences and structure for proteins involved in glycolysis/gluconeogenesis. The results are compatible with the notion that the first portions of the proteins were the areas homologous to the present-day catalytic sites. Those “proto-proteins” had a simple function: binding to cofactors. Upon the accretion of new elements to the structure, the catalytic function could have emerged. Also, the first structural motifs might have been related to the emergence of the different proteins that work in modern organisms.


2015 ◽  
Vol 112 (33) ◽  
pp. 10112-10119 ◽  
Author(s):  
Stuart A. West ◽  
Roberta M. Fisher ◽  
Andy Gardner ◽  
E. Toby Kiers

The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven’t taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved.


2021 ◽  
Author(s):  
Dylan C. Gagler ◽  
Bradley Karas ◽  
Chris Kempes ◽  
Aaron D. Goldman ◽  
Hyunju Kim ◽  
...  

AbstractAll life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to currently observed biochemistry and does not allow quantitative predictions about examples not yet observed. Here we introduce a more generalizable concept of biochemical universality, more akin to the kind of universality discussed in physics. Using annotated genomic datasets including an ensemble of 11955 metagenomes and 1282 archaea, 11759 bacteria and 200 eukaryotic taxa, we show how four of the major enzyme functions - the oxidoreductases, transferases, hydrolases and ligases - form universality classes with common scaling behavior in their relative abundances observed across the datasets. We verify these universal scaling laws are not explained by the presence of compounds, reactions and enzyme functions shared across all known examples of life. We also demonstrate how a consensus model for the last universal common ancestor (LUCA) is consistent with predictions from these scaling laws, with the exception of ligases and transferases. Our results establish the existence of a new kind of biochemical universality, independent of the details of the component chemistry, with implications for guiding our search for missing biochemical diversity on Earth, or other for any biochemistries that might deviate from the exact chemical make-up of life as we know it, such as at the origins of life, in alien environments, or in the design of synthetic life.


Author(s):  
A.Maxwell Burroughs ◽  
L Aravind

The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally-unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently-characterized ArfT, which is more widely-distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.


Author(s):  
Jennifer E James ◽  
Sara M Willis ◽  
Paul G Nelson ◽  
Catherine Weibel ◽  
Luke J Kosinski ◽  
...  

AbstractExtant protein-coding sequences span a huge range of ages, from those that emerged only recently in particular lineages, to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be “phylostratigraphy” trends in any properties that evolve slowly with age. Indeed, a long-term reduction in hydrophobicity and in hydrophobic clustering has been found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced and dated eukaryotic species, using sensitive HMM methods to detect homology of protein domains (which may vary in age within the same gene), and applying a variety of quality filters. We find that the reduction in hydrophobic clustering is universal across diverse lineages, showing limited sign of saturation. But the tendency for young domains to have higher protein structural disorder, driven primarily by more hydrophilic amino acids, is found only among young animal domains, and not young plant domains, nor ancient domains predating the existence of the last eukaryotic common ancestor. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that events during the earliest stages of life on earth continue to have an impact on the composition of ancient sequences.


Terr Plural ◽  
2021 ◽  
Vol 15 ◽  
pp. e2117753
Author(s):  
Isabelle de Siqueira Tavares ◽  
◽  
Jeanninny Carla Comniskey ◽  
Elvio Pinto Bosetti ◽  
◽  
...  

Paleontology is a fundamental theme for the study and understanding of the origin and evolution of life on earth and is included in documents that govern basic education in Brazilian schools. The city of Ponta Grossa is widely known for its sites with abundant fossiliferous content. Based on the relevance of the theme and the characteristics of the region, this study evaluated the level of knowledge about Paleontology and the preservation of Paleontological Heritage among elementary school students of a public school. We used questionnaires, lectures, exhibitions of fossils from the region, and analysis of the textbooks used by the school with two classes of 7th and 8th grade. In general, the students of the four classes demonstrated a similar level of initial knowledge about the theme, presenting basic conceptualization difficulties and a lack of knowledge about the occurrence of fossils in the region. A lack of approach to the theme in the analyzed textbooks was also verified, which corroborates the low level of knowledge of the students. The activities applied were effective in the appropriation of knowledge, with changes in the level of understanding of the students at the end. The importance of using different methodologies for teaching this science is emphasized.


2014 ◽  
Author(s):  
Arcady Mushegian

I review recent literature on the reconstruction of gene repertoire of the Last Universal Common Ancestor of cellular life (LUCA). The form of the phylogenetic record of cellular life on Earth is important to know in order to reconstruct any ancestral state; therefore I also discuss the emerging understanding that this record does not take the form of a tree. I argue that despite this, “tree-thinking” remains an essential component in evolutionary thinking and that “pattern pluralism” in evolutionary biology can be only epistemological, but not ontological.


Author(s):  
M. Markov ◽  
M. Markov

This paper is written in order to summarizes the role of electromagnetic fields in the origin and evolution of life on Earth, as well as hazard and benefit from electromagnetic fields. It is an attempt to show that today the mankind and the entire biosphere are subjected to a global experiment conducted without protocol, monitoring and even knowing the parameters of the applied electromagnetic fields. At the same time, electromagnetic fields used in magnetotherapy has been proven to be beneficial in treatment of various health problems. Magnetotherapy is non-invasive, safe, and easily applied methods to directly treat the site of injury, the source of pain, and inflammation. The development of advanced communication technologies year after year increases the hazard for the biosphere and mankind. The paper discuses the contradiction between scientists and technological engineers in the line thermal or nonthermal are effects of electromagnetic fields. The specific problems with children health are analyzed. It focused on the facts that at the end of the second decade of this century more aggressive mobile communications, such as 4G and especially 5G are being introduced in the North America and Europe without any attempt to evaluate the hazard for civilization.


Sign in / Sign up

Export Citation Format

Share Document