scholarly journals Hydrocarbon Source Rock Potential of the Lacustrine Black Shale Unit, Mamfe Basin, Cameroon, West Africa

2016 ◽  
Vol 5 (2) ◽  
pp. 217 ◽  
Author(s):  
NJOH Olivier Anoh ◽  
NJIE Sarah Mesanga

The potential for conventional and/or unconventional hydrocarbon exploration requires the presence of organic-rich, thermally mature rock units containing oil or gas-prone kerogen. Thick black, organic rich shale intervals are well exposed along roadside cuts and river banks at several localities in the eastern part of the Mamfe Basin. Earlier described as anoxic lake bottom deposits, these fine grained rocks constitute the probable pod of active source rock in this basin and belonging to the middle stratigraphic unit of the three that make up the basin’s sedimentary fill. Samples collected from representative outcrop sections (Etoko mile 21, Bachuo Ntai, and Satom Bridge) in the study area were subjected to geochemical analytic techniques; Total Organic Carbon (TOC), Rock-Eval Pyrolysis and Vitrinite reflectance (%Ro) values were calculated. TOC data obtained range from 1.06% to 16.10% indicating good to excellent hydrocarbon generative potentials, Rock-Eval Pyrolysis data plotted along Kerogen Types I, II and III with oil and gas generative potentials. 4 out of 9 samples fall within the oil window from the calculated %Ro while temperatures corresponding to the peak of kerogen pyrolysis (Tmax) and Production Index (PI) for the 9 samples range from 398oC to 463oC indicating that the organic matter (OM) are immature to post mature.The black shale unit of this part of the basin therefore contains very high amounts of good to excellent quality of thermally matured organic matter which can produce and expel oil and gas respectively.

2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


2018 ◽  
Vol 9 (2) ◽  
pp. 937-951 ◽  
Author(s):  
Sajjad Ahmad ◽  
Faizan Ahmad ◽  
Abd Ullah ◽  
Muhammad Eisa ◽  
Farman Ullah ◽  
...  

Abstract The present study details the hydrocarbon source rock geochemistry and organic petrography of the outcrop and subsurface samples of the Middle Jurassic Chiltan Formation and the Lower Cretaceous Sembar Formation from the Sann #1 well Central and Southern Indus Basin, Pakistan. The total organic carbon (TOC), Rock–Eval pyrolysis, vitrinite reflectance (Ro) % and Maceral analysis techniques were used and various geochemical plots were constructed to know the quality of source rock, type of kerogen, level of maturity and migration history of the hydrocarbons. The outcrop and Sann #1 well data on the Sembar Formation reveals poor, fair, good and very good quality of the TOC, type II–III kerogen, immature–mature organic matter and an indigenous hydrocarbon generation potential. The outcrop and Sann #1 well data on the Chiltan Formation show a poor–good quality of TOC, type II–III kerogen, immature–mature source rock quality and having an indigenous hydrocarbon generation potential. The vitrinite reflectance [Ro (%)] values and Maceral types [fluorescent amorphous organic matter, exinite, alginite and inertnite] demonstrate that maturity in both Sembar and the Chiltan formation at surface and subsurface fall in the oil and gas generation zone to cracking of oil to gas condensate zone. Recurrence of organic rich and poor intervals within the Sembar and Chiltan formation are controlled by the Late Jurassic thermal uplift preceding the Indo-Madagascar separation from the Afro-Arabian Plate and Early Cretaceous local transgressive–regressive cycles. From the current study, it is concluded that both Sembar and Chiltan formation can act as a potential hydrocarbon source rock in the study area.


2009 ◽  
Vol 12 (6) ◽  
pp. 60-72
Author(s):  
Luan Thi Bui

Geochemical parameters used popularly to define the level of maturation of organic matter are a vitrinite reflectance % Ro) combined with Tmax value defined at the peak Pic S2 by Pyrolysis (Rock-Eval). Moreover, model TTI method of Lopatin and Waple is applied to define the level of maturation of organic matter at any point where there is no well. By this way, mature process of organic matter will be estimated generally for a whole of study area. Results are that organic matters of lower Oligocene and upper Eocene formation and the bottom of upper Oligocene formation provide essentially oil and gas of Cuu Long basin. The bottom of lower Oligocene and the top of Eocene formation supplement wet and Condensat. Eocene formation at the depressions especially in the east and north BachHo is the dry gas. Oil and gas generated and migrated into traps occurred from early Miocene, but very intensively generated and migrated in period of Pliocene + Quaternary times. At the same time, the traps always are supplemented the wet gas, condensate and dry gas from Eocene formation.


2021 ◽  
Vol 11 (4) ◽  
pp. 1679-1703
Author(s):  
Liyana Nadiah Osli ◽  
Mohamed Ragab Shalaby ◽  
Md. Aminul Islam

AbstractA comparative analysis on source rock properties has been carried out on the Miocene-Pliocene formations as well as the Quaternary terrace deposits using Rock–Eval pyrolysis results and organic petrography as well as some biomarkers results. Samples were obtained from outcrops of the Quaternary terrace deposits, Pliocene-aged Liang Formation together with the Miocene Miri and Setap Shale formations in Brunei-Muara district, with sample lithologies ranging from coal, coaly shale, shale and lignitic sand. High total organic carbon (TOC) and S2 values ranging from 41.8 to 62.4% and 7.40 mg HC/g rock to 122 mg HC/g rock, respectively, are identified in coals of the terrace deposit, Liang and Miri formations, making these as the best potential source rock due to the “good to excellent” generating potential. Meanwhile, a “fair to poor” potential is exhibited for the coaly shale, shale and lignitic sand samples as a result of their low TOC, HI and S2 values. The organic matter is composed of kerogen type III (gas prone) and type II-III (mixed oil and gas prone). Organic matter in all studied formations originate from a terrestrial-source, as proven by the abundance of huminite. Organic petrographical and biomarkers studies suggest that the coals and lignitic sand samples were deposited in a mangrove-type mire in a lower delta setting, under oxic and limnic to limnotelmatic conditions, except sample DD2-1, which is deposited in a less water-saturated environment. The samples display the presence of bi-modal and normal distribution of n-alkanes. For all of the samples, the dominating plant types in the palaeomire are of soft, herbaceous plants and this is supported by the low vegetation index and moderate Paq values. All the studied samples are thermally immature to early mature, as exhibited by the Tmax values that range from 300 to 437 °C and vitrinite reflectance readings of 0.22% to 0.46%.


1985 ◽  
Vol 33 ◽  
pp. 239-252
Author(s):  
Birthe J. Schmidt

The Rhaetic - Jurassic - Lower Cretaceous sediments from the Børglum 1 and Uglev 1 wells have been investigated by coal petrographical methods to evaluate their hydrocarbon source rock potential. The methods include vitrinite reflectance analyses of maturity, optical qualitative rating of the composition of the dispersed organic matter in the sediments, along with an estimation of the total organic carbon content of the sediments. The composition of the sedimentary organic matter is highly influenced by the palaeogeographic conditions. In the Børglum 1 well the organic material is dominated by land-derived (mainly gas-prone) plant matter; this is also the case for the marine sediments due to introduction of plant material from the adjacent Fennoscandian Border Zone. The sediments in Uglev 1 also have a high content of terrestrial plant material, although there is more marine dominated (oil-prone) organic matter in the deposits of the Bream Formation. The most promising conditions tor generation of liquid hydrocarbons have been found in the Bream Formation in Uglev 1, but the investigated sediments are generally thermally immature, with a restricted potential tor hydrocarbon generation. The rank gradient for Uglev 1 (0.20 % Ro/km), which is situated over a deep-seated salt diapir is more than three times that of Børglum 1 (0.06 % Ro/km), which is placed more marginally in the Danish Subbasin. This is attributed to differences in the geothermal gradients (Børglum 1:19°C/km, Uglev 1: 32 and 37°C/km, uncorrected)


Author(s):  
S., R. Muthasyabiha

Geochemical analysis is necessary to enable the optimization of hydrocarbon exploration. In this research, it is used to determine the oil characteristics and the type of source rock candidates that produces hydrocarbon in the “KITKAT” Field and also to understand the quality, quantity and maturity of proven source rocks. The evaluation of source rock was obtained from Rock-Eval Pyrolysis (REP) to determine the hydrocarbon type and analysis of the value of Total Organic Carbon (TOC) was performed to know the quantity of its organic content. Analysis of Tmax value and Vitrinite Reflectance (Ro) was also performed to know the maturity level of the source rock samples. Then the oil characteristics such as the depositional environment of source rock candidate and where the oil sample develops were obtained from pattern matching and fingerprinting analysis of Biomarker data GC/GCMS. Moreover, these data are used to know the correlation of oil to source rock. The result of source rock evaluation shows that the Talangakar Formation (TAF) has all these parameters as a source rock. Organic material from Upper Talangakar Formation (UTAF) comes from kerogen type II/III that is capable of producing oil and gas (Espitalie, 1985) and Lower Talangakar Formation (LTAF) comes from kerogen type III that is capable of producing gas. All intervals of TAF have a quantity value from very good–excellent considerable from the amount of TOC > 1% (Peters and Cassa, 1994). Source rock maturity level (Ro > 0.6) in UTAF is mature–late mature and LTAF is late mature–over mature (Peters and Cassa, 1994). Source rock from UTAF has deposited in the transition environment, and source rock from LTAF has deposited in the terrestrial environment. The correlation of oil to source rock shows that oil sample is positively correlated with the UTAF.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2020 ◽  
Vol 10 (8) ◽  
pp. 3207-3225
Author(s):  
Mohamed Ragab Shalaby ◽  
Muhammad Izzat Izzuddin bin Haji Irwan ◽  
Liyana Nadiah Osli ◽  
Md Aminul Islam

Abstract This research aims to conduct source rock characterization on the Narimba Formation in the Bass Basin, Australia, which is made of mostly sandstone, shale and coal. The geochemical characteristics and depositional environments have been investigated through a variety of data such as rock–eval pyrolysis, TOC, organic petrography and biomarkers. Total organic carbon (TOC) values indicated good to excellent organic richness with values ranging from 1.1 to 79.2%. Kerogen typing of the examined samples from the Narimba Formation indicates that the formation contains organic matter capable of generating kerogen Type-III, Type-II-III and Type-II which is gas prone, oil–gas prone and oil prone, respectively. Pyrolysis maturity parameters (Tmax, PI), in combination with vitrinite reflectance and some biomarkers, all confirm that all samples are at early mature to mature and are in the oil and wet gas windows. The biomarkers data (the isoprenoids (Pr/Ph), CPI, isoprenoids/n-alkanes distribution (Pr/nC17 and Ph/nC18), in addition to the regular sterane biomarkers (C27, C28 and C29) are mainly used to evaluate the paleodepositional environment, maturity and biodegradation. It has been interpreted that the Narimba Formation was found to be deposited in non-marine (oxygen-rich) depositional environment with a dominance of terrestrial plant sources. All the analyzed samples show clear indication to be considered at the early mature to mature oil window with some indication of biodegradation.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


Sign in / Sign up

Export Citation Format

Share Document