scholarly journals Improving Complementarity Effect of Legume Intercrop by Earthworm Facilitation for Wheat Performance

2018 ◽  
Vol 10 (12) ◽  
pp. 1
Author(s):  
Baptiste Drut ◽  
Nathalie Cassagne ◽  
Mario Cannavacciuolo ◽  
Gaëtan Le Floch ◽  
José F. Cobo-Díaz ◽  
...  

Intercrops and crop mixtures are considered to be a way to increase nitrogen use efficiency by promoting niche complementarity and facilitation, reducing the input of fertilizers and herbicides, which are important factors when considering the effects of climate change. However, interactions between crop communities and soil functional diversity also have major effects on crop cover function. Our study aimed to investigate the simultaneous effects of plant composition and presence of earthworms on the growth (roots and shoots) of wheat (Triticum aestivum L.). Mesocosms filled with soil were sown with either 6 wheat plants of the same cultivar, or 6 plants of 3 different wheat cultivars, or 3 wheat plants of 3 different cultivars with 3 clover plants (Trifolium hybridum L.). A part of the mesocosms was inoculated with either endogeic earthworms (Aporrectodea caliginosa S.) or a mixture of endogeic and anecic earthworms (Lumbricus terrestris S.). A relative interaction index was calculated to highlight competition strength between plants with or without earthworms. The presence of different cultivars had no influence on wheat performance, but with clover, plant competition decreased to the benefit of wheat biomass and N accumulation. Earthworms also reduced the competitive strength between wheat plants in mixed-cultivar mesocosms and in intercropping. In intercrops with clover, wheat performance was improved as a result of niche complementarity and earthworm facilitation for N resource. Our results suggest that the plant functional group, such as legumes, and earthworm communities work synergistically to improve wheat yields.

2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


2019 ◽  
Vol 65 (No. 9) ◽  
pp. 456-462
Author(s):  
Guohua Lv ◽  
Wei Han ◽  
Hanbo Wang ◽  
Wenbo Bai ◽  
Jiqing Song

A 2-year field experiment was carried out in loessal soil in a semi-humid climate to research winter wheat (Triticum aestivum L.) growth and nitrogen use efficiency. The result showed that subsoiling increased root penetration and promoted deep soil water absorption, which resulted in high resilience to the adverse dry climate. Soil NO<sub>3</sub><sup>–</sup>-N residue throughout the profile was decreased but increased in rotary tillage. Grain yield was significantly increased by 21.9% and 11.3% in 2016 and 2017, respectively, mainly due to the significantly larger spikes per hectare and grains per spike. Nitrogen use efficiency was significantly improved by 26.7% in 2016 and 13.8% in 2017. For loessal soil in semi-humid climate, breaking the plough pan was necessary, and it was useful for the increase of grain yield and nitrogen use efficiency.


2020 ◽  
Vol 11 ◽  
Author(s):  
José Domínguez-Figueroa ◽  
Laura Carrillo ◽  
Begoña Renau-Morata ◽  
Lu Yang ◽  
Rosa-V Molina ◽  
...  

Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops.


2014 ◽  
Vol 41 (2) ◽  
pp. 215 ◽  
Author(s):  
Jiayin Pang ◽  
Jairo A. Palta ◽  
Gregory J. Rebetzke ◽  
Stephen P. Milroy

Genotypic differences in early growth and nitrogen (N) uptake among 24 wheat (Triticum aestivum L.) genotypes were assessed in a field trial. At late tillering, large genetic variation was observed for shoot biomass (23–56 g m–2 ground area) and N uptake (1.1–1.8 g m–2 ground area). A strong correlation between aboveground biomass and N uptake was observed. Variation around this relationship was also found, with some genotypes having similar N uptake but large differences in aboveground biomass. A controlled environment experiment was conducted to investigate the underlying mechanisms for this variation in aboveground biomass using three vigorous genotypes (38–19, 92–11 and CV97) and a non-vigorous commercial cultivar (Janz). Vigorous genotypes had lower specific leaf N in the youngest fully expanded leaf than Janz. However, there was no difference in chlorophyll content, maximum Rubisco activity or the rate of electron transport per unit area. This suggests that Janz invested more N in non-photosynthetic components than the vigorous lines, which could explain the higher photosynthetic N use efficiency of the vigorous genotypes. The results suggest that the utilisation of wheat genotypes with high early vigour could improve the efficiency of N use for biomass production in addition to improving N uptake during early growth.


2007 ◽  
Vol 87 (2) ◽  
pp. 289-292 ◽  
Author(s):  
H. Wang ◽  
T. N. McCaig ◽  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. Lemke

Recently developed cultivars of Canada Western Red Spring (CWRS) wheat (Triticum aestivum L.) and Canada Western Amber Durum (CWAD) (Triticum turgidum L. var durum) produced significantly more grain than older cultivars. This production was attributed to higher harvest indices and better water use efficiency. Durum cultivars and CWRS AC Intrepid and AC Barrie extracted relatively more soil water below 55 cm, which may be advantageous in minimizing leaching and related to drought tolerance during grain-filling. Key words: Hexaploid wheat, durum, water use, soil water


Sign in / Sign up

Export Citation Format

Share Document