scholarly journals Farmer Perception and Adaptation Strategies on Climate Change in Lower Eastern Kenya: A Case of Finger Millet (Eleusine coracana (L.) Gaertn) Production

2016 ◽  
Vol 8 (12) ◽  
pp. 33
Author(s):  
Madegwa Yvonne ◽  
Onwonga Richard ◽  
Shibairo Solomon ◽  
Karuku George

Eastern Kenya, a semi-arid region, is characterized by low and erratic rainfall, high temperatures, and low soil fertility. Climate change has further worsened the situation leading to frequent droughts and hence increased food insecurity. Traditional crops like finger millet are possible solutions to combating changing climate due to their drought resistance nature, ability to produce high yields with little inputs and high nutritional content. It is against this backdrop that a survey was carried out in Mwala and Katangi divisions of Machakos and Kitui counties, respectively, to assess farmer’s perception on climate change, coping and adaptation mechanisms in finger millet production systems in smallholder farming systems of lower eastern Kenya. Data was collected, using semi-structured questionnaire, from 120 farmers i.e. 60 in each division. A stratified random sampling procedure, with location as a stratum was used to select respondent’s households. A computer random number generator was used to select number of households in each stratum. Maize and beans were the most popular crops grown by over 98% of the farmers in both sub-counties. Farmers also grew drought tolerant legumes; cow peas, green grams pigeon peas and cereals; sorghum and finger millet. Temperature rise was ranked highest with 88% and 98%, followed by prolonged drought with 70% and 72%, irregular rainfall at 69% and 81% and increased wind intensity at 22% and 28% at Machakos and Kitui, respectively, as aspects of climate change perceived by farmers. Farmers had taken up early planting at 88.6% and 93.7%, use of organic inputs at 89% and 92%, introduced new tillage practices, by applying ridges and furrows and tied ridges at 45% and 54%, and by adopting irrigation at 13%, and 9%, as coping strategies to climate change in Machakos and Kitui, respectively.It can be concluded that farmers in Machakos and Kitui are aware of climate change and its negative effects on crop production. In a bid to minimize crop loss and food insecurity, they have taken up various soil moisture conservation and soil fertility enhancement technologies.

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 461
Author(s):  
Gourav Sharma ◽  
Swati Shrestha ◽  
Sudip Kunwar ◽  
Te-Ming Tseng

Weeds are among the major constraints to any crop production system, reducing productivity and profitability. Herbicides are among the most effective methods to control weeds, and reliance on herbicides for weed control has increased significantly with the advent of herbicide-resistant crops. Unfortunately, over-reliance on herbicides leads to environmental-health issues and herbicide-resistant weeds, causing human health and ecological concerns. Crop diversification can help manage weeds sustainably in major crop production systems. It acts as an organizing principle under which technological innovations and ecological insights can be combined to manage weeds sustainably. Diversified cropping can be defined as the conscious inclusion of functional biodiversity at temporal and/or spatial levels to improve the productivity and stability of ecosystem services. Crop diversification helps to reduce weed density by negatively impacting weed seed germination and weed growth. Additionally, diversified farming systems are more resilient to climate change than monoculture systems and provide better crop yield. However, there are a few challenges to adopting a diversified cropping system, ranging from technology innovations, government policies, farm-level decisions, climate change, and market conditions. In this review, we discuss how crop diversification supports sustainable weed management, the challenges associated with it, and the future of weed management with respect to the diversification concept.


Author(s):  
Gourav Sharma ◽  
Swati Shrestha ◽  
Kunwar Sudip ◽  
Te Ming Tseng

Weeds are among the major constraints to any crop production system, reducing productivity and profitability. Herbicides are among the most effective methods to control weeds, and reliance on herbicides for weed control has increased significantly with the advent of herbicide-resistant crops. Unfortunately, over-reliance on herbicides leads to environmental-health issues and herbicide-resistant weeds, causing human-health and ecological concerns. Crop diversification can help manage weeds sustainably in major crop production systems. It acts as an organizing principle under which technological innovations and ecological insights can be combined to manage weeds sustainably. Diversified cropping can be defined as the conscious inclusion of functional biodiversity at temporal and/or spatial levels to improve the productivity and stability of ecosystem services. Crop diversification helps to reduce weed density by negatively impacting weed seed germination and weed growth. Additionally, diversified farming systems are more resilient to climate change than monoculture systems and provide better crop yield. However, there are a few challenges to adopting a diversified cropping system, which ranges from technology innovations, government policies, farm-level decisions, climate change, and market conditions. In this review, we discuss how crop diversification supports sustainable weed management, the challenges associated with it, and the future of weed management with respect to the diversification concept.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marjorie Bonareri Oruru ◽  
Ezekiel Mugendi Njeru

Smallholder farming systems form unique ecosystems that can protect beneficial soil biota and form an important source of useful genetic resources. They are characterized by high level of agricultural diversity mainly focused on meeting farmers’ needs. Unfortunately, these systems often experience poor crop production mainly associated with poor planning and resource scarcity. Soil fertility is among the primary challenges faced by smallholder farmers, which necessitate the need to come up with affordable and innovative ways of replenishing soils. One such way is the use of microbial symbionts such as arbuscular mycorrhizal fungi (AMF), a beneficial group of soil microbiota that form symbiotic associations with majority of cultivated crops and play a vital role in biological soil fertility, plant nutrition, and protection. AMF can be incorporated in smallholder farming systems to help better exploit chemical fertilizers inputs which are often unaffordable to many smallholder farmers. The present review highlights smallholder farming practices that could be innovatively redesigned to increase AMF symbiosis and related agroecosystem services. Indeed, the future of global food security depends on the success of smallholder farming systems, whose crop productivity depends on the services provided by well-functioning ecosystems, including soil fertility.


Author(s):  
Marianna Fenzi ◽  
Paul Rogé ◽  
Angel Cruz-Estrada ◽  
John Tuxill ◽  
Devra Jarvis

AbstractLocal seed systems remain the fundamental source of seeds for many crops in developing countries. Climate resilience for small holder farmers continues to depend largely on locally available seeds of traditional crop varieties. High rainfall events can have as significant an impact on crop production as increased temperatures and drought. This article analyzes the dynamics of maize diversity over 3 years in a farming community of Yucatán state, Mexico, where elevated levels of precipitation forced farmers in 2012 to reduce maize diversity in their plots. We study how farmers maintained their agroecosystem resilience through seed networks, examining the drivers influencing maize diversity and seed provisioning in the year preceding and following the 2012 climatic disturbance (2011–2013). We found that, under these challenging circumstances, farmers focused their efforts on their most reliable landraces, disregarding hybrids. We show that farmers were able to recover and restore the diversity usually cultivated in the community in the year following the critical climate event. The maize dynamic assessed in this study demonstrates the importance of community level conservation of crop diversity. Understanding farmer management strategies of agrobiodiversity, especially during a challenging climatic period, is necessary to promote a more tailored response to climate change in traditional farming systems.


2021 ◽  
Vol 13 (8) ◽  
pp. 4235
Author(s):  
Silvia Saravia-Matus ◽  
T. S. Amjath-Babu ◽  
Sreejith Aravindakshan ◽  
Stefan Sieber ◽  
Jimmy A. Saravia ◽  
...  

By developing meta-frontier efficiency and structural equation models, the paper examines whether farm economic viability is positively associated with technical efficiency in a highly food insecure context, such as that of rural Sierra Leone. The findings show that technical efficiency can be a sufficient but not necessary condition in determining economic viability of smallholder farming. It is possible to breach reproductive thresholds at the cost of reduced technical efficiency, when the crop diversification strategy of smallholders includes market-oriented high-value crops. This calls for a dual policy approach that addresses farmers’ internal needs for self-consumption (increasing efficiency of food crop production) while encouraging market-oriented cash crop production (diversification assisted through the reduction of associated transaction costs and the establishment of accessible commercialization channels of export related crops and/or high-value crops). The work also calls out for a move-up or move-out strategy for small holders to create viable farming systems in developing world.


Author(s):  
Nnyaladzi Batisani ◽  
Flora Pule-Meulenberg ◽  
Utlwang Batlang ◽  
Federica Matteoli ◽  
Nelson Tselaesele

Author(s):  
Mohamed Nasser Baco

Previous studies suggested that maize is set to become a cash crop while ensuring food security better than any other crop. However, climate change has become one of the key production constraints that are now hampering and threatening the sustainability of maize production systems. We conducted a study to better understand changes here defined as adaptations made by smallholder farmers to ensure food security and improve income through maize production in a climate change context. Our results show that maize farmers in northern Benin mainly rely on traditional seeds. Drought as abiotic stress is perceived by farmers in many agro-ecological zones as a disruptive factor for crop production, including maize. When drought is associated with pest damages, both the quantity (i.e. yield) and the quality (i.e. attributes) of products/harvests are negatively affected. The adverse effects of drought continue to reduce production in different agro-ecological zones of the country, because of the lack of widespread adoption of tolerant varieties. The study suggests actions towards the production of drought-tolerant maize seeds, a promotion of seed companies, the organization of actors and value chains. Apart from climate change, the promotion of value chains is also emerging as one of the important aspects to take into account to sustain maize production in Benin.


2021 ◽  
pp. 2150012
Author(s):  
Isaac Dasmani ◽  
Samuel K. N. Dadzie

In most developing countries, climate variabilities and discount rate played an integral role in the decision-making of farmers, which mostly affect their net revenue. Our study employs Ricardian models to empirically verify this hypothesis using data collected from three major agro-climatic zones in Ghana. We particularly estimated the comparative effect of climate change variability, discount rate, and soil fertility; due to trade-off effect of certain farm practices in response to climate change across major climatic zones and also the fact that discount rate becomes an extremely critical issue in formulating and evaluating conservation and management policy to address climate change. The result indicates that discount rate has a positive and significant effect on the farmers’ net revenue. Further, effect of changes in temperature on food crop production and hence net revenue is more felt in the forest and savannah zones. On the other hand, an increase in rainfall has significant negative effects on crop net revenues and whole-farm net revenue, but a positive effect on net revenue of farmers in the savannah zone. We also found a significant increase in soil fertility to increase crop net revenues.


Sign in / Sign up

Export Citation Format

Share Document