scholarly journals Effects on Survival of Escherichia coli O157:H7 in Non-Intact Steaks of the Frequency of Turning Over Steaks During Grilling

2013 ◽  
Vol 2 (5) ◽  
pp. 77 ◽  
Author(s):  
C. O. Gill ◽  
X. Yang ◽  
B. Uttaro ◽  
M. Badoni ◽  
T. Liu

<p>Beef steaks between 1 cm and 3 cm-thick were inoculated with <em>Escherichia coli </em>O157:H7 and/or temperature histories were collected at steak centres, at points initially below the central plane, and/or at points 1 cm or 2 cm from steak edges. The steaks were turned over once during grilling when temperatures at the centres reached 30°C or 50°C, or at specified times once, twice or several times during cooking to specified temperatures between 60and 71°C. When steaks were turned over at centre temperature of 30 or 50°C, some points in some steaks did not reach the temperatures specified for steak centres. When steaks turned over at 50°C were cooked to 60, 63 or 65°C, <em>E. coli </em>O157:H7 inoculated at ? 5 log cfu at each point survived at some points in some steaks at numbers ?3 log cfu. When steaks were turned over once during cooking to 71°C, <em>E. coli </em>O157:H7 survived at some points in some steaks turned over after ? 8 min. When steaks were turned over frequently, or twice at appropriate times during cooking to 63°C, no <em>E. coli </em>O157:H7 were recovered from any inoculated steak. Thus, cooking steaks to 71°C may sometimes have only relatively small effects on <em>E. coli </em>O157:H7 in steaks turned over once. However, turning steaks over twice or more during cooking to 63°C can ensure inactivation of large numbers of <em>E. coli</em> O157:H7 at all points in mechanically tenderized steaks.</p>

2014 ◽  
Vol 77 (6) ◽  
pp. 919-926 ◽  
Author(s):  
C. O. GILL ◽  
J. DEVOS ◽  
M. K. YOUSSEF ◽  
X. YANG

Beef steaks (2 cm thick) were each inoculated at three sites in the central plane with Escherichia coli O157:H7 at 5.9 ± 0.3 log CFU per site. Temperatures at steak centers were monitored during cooking on a hot plate or the grill of a gas barbeque. Steaks were cooked in groups of five using the same procedures and cooking each steak to the same temperature, and surviving E. coli O157:H7 at each site was enumerated. When steaks cooked on the hot plate were turned over every 2 or 4 min during cooking to between 56 and 62°C, no E. coli O157:H7 was recovered from steaks cooked to ≥58 or 62°C, respectively. When steaks were cooked to ≤71°C and turned over once during cooking, E. coli O157:H7 was recovered from steaks in groups turned over after ≤8 min but not from steaks turned over after 10 or 12 min. E. coli O157:H7 was recovered in similar numbers from steaks that were not held or were held for 3 min after cooking when steaks were turned over once after 4 or 6 min during cooking. When steaks were cooked on the grill with the barbeque lid open and turned over every 2 or 4 min during cooking to 63 or 56°C, E. coli O157:H7 was recovered from only those steaks turned over at 4-min intervals and cooked to 56°C. E. coli O157:H7 was recovered from some steaks turned over once during cooking on the grill and held or not held after cooking to 63°C. E. coli O157:H7 was not recovered from steaks turned over after 4 min during cooking to 60°C on the grill with the barbeque lid closed or when the lid was closed after 6 min. Apparently, the microbiological safety of mechanically tenderized steaks can be assured by turning steaks over at intervals of about 2 min during cooking to ≥60°C in an open skillet or on a barbecue grill. When steaks are turned over only once during cooking to ≥60°C, microbiological safety may be assured by covering the skillet or grill with a lid during at least the final minutes of cooking.


2012 ◽  
Vol 75 (1) ◽  
pp. 62-70 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
ANNA C. S. PORTO-FETT ◽  
BRADLEY A. SHOYER ◽  
JEFFREY E. CALL ◽  
WAYNE SCHLOSSER ◽  
...  

We compared the fate of cells of both Shiga toxin–producing Escherichia coli O157:H7 (ECOH) and Shiga toxin–producing non-O157:H7 E. coli (STEC) in blade-tenderized steaks after tenderization and cooking on a gas grill. In phase I, beef subprimal cuts were inoculated on the lean side with about 5.5 log CFU/g of a five-strain mixture of ECOH or STEC and then passed once through a mechanical blade tenderizer with the lean side facing up. In each of two trials, 10 core samples were removed from each of two tenderized subprimals and cut into six consecutive segments starting from the inoculated side. Ten total cores also were obtained from two nontenderized (control) subprimals, but only segment 1 (the topmost segment) was sampled. The levels of ECOH and STEC recovered from segment 1 were about 6.0 and 5.3 log CFU/g, respectively, for the control subprimals and about 5.7 and 5.0 log CFU/g, respectively, for the tenderized subprimals. However, both ECOH and STEC behaved similarly in terms of translocation, and cells of both pathogen cocktails were recovered from all six segments of the cores obtained from tenderized subprimals, albeit at lower levels in segments 2 to 6 than those found in segment 1. In phase II, steaks (2.54 and 3.81 cm thick) cut from tenderized subprimals were subsequently cooked (three steaks per treatment) on a commercial open-flame gas grill to internal temperatures of 48.9, 54.4, 60.0, 65.6, and 71.1°C. Regardless of temperature or thickness, we observed 2.0- to 4.1-log and 1.5- to 4.5-log reductions in ECOH and STEC levels, respectively. Both ECOH and STEC behaved similarly in response to heat, in that cooking eliminated significant numbers of both pathogen types; however, some survivors were recovered due, presumably, to uneven heating of the blade-tenderized steaks.


2019 ◽  
Vol 82 (9) ◽  
pp. 1532-1538 ◽  
Author(s):  
ANDREA CURRIE ◽  
LANCE HONISH ◽  
JENNIFER CUTLER ◽  
ANNIE LOCAS ◽  
MARIE-CLAUDE LAVOIE ◽  
...  

ABSTRACT Contaminated beef is a known vehicle of Escherichia coli O157:H7 infection, although more attention is given to the control of E. coli O157:H7 in ground, rather than whole-cut, beef products. In September 2012, an investigation was initiated at an Alberta, Canada, beef plant after the detection of E. coli O157:H7 in two samples of trim cut from beef originating from this plant. Later in September 2012, Alberta Health Services identified five laboratory-confirmed infections of E. coli O157:H7, and case patients reported eating needle-tenderized beef steaks purchased at a store in Edmonton, Alberta, produced with beef from the Alberta plant. In total, 18 laboratory-confirmed illnesses in Canada in September and October 2012 were linked to beef from the Alberta plant, including the five individuals who ate needle-tenderized steaks purchased at the Edmonton store. A unique strain of E. coli O157:H7, defined by molecular subtyping and whole genome sequencing, was detected in clinical isolates, four samples of leftover beef from case patient homes, and eight samples of Alberta plant beef tested by industry and food safety partners. Investigators identified several deficiencies in the control of E. coli O157:H7 at the plant; in particular, the evaluation of, and response to, the detection of E. coli O157 in beef samples during routine testing were inadequate. To control the outbreak, 4,000 tons of beef products were recalled, making it the largest beef recall in Canadian history. This outbreak, in combination with similar outbreaks in the United States and research demonstrating that mechanical tenderization can transfer foodborne pathogens present on the surface into the interior of beef cuts, prompted amendments to Canada's Food and Drug Regulations requiring mechanically tenderized beef to be labeled as such and to provide safe cooking instructions to consumers. A detailed review of this event also led to recommendations and action to improve the safety of Canada's beef supply.


2009 ◽  
Vol 72 (7) ◽  
pp. 1404-1411 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
ANNA C. S. PORTO-FETT ◽  
BRADLEY SHOYER ◽  
RANDALL K. PHEBUS ◽  
HARSHAVARDHAN THIPPAREDDI ◽  
...  

Beef subprimals were inoculated on the lean side with ca. 4.0 log CFU/g of a cocktail of rifampin-resistant (Rifr) Escherichia coli O157:H7 strains and then passed once through a mechanical blade tenderizer with the lean side facing upward. Inoculated subprimals that were not tenderized served as controls. Two core samples were removed from each of three tenderized subprimals and cut into six consecutive segments starting from the inoculated side. A total of six cores were also obtained from control subprimals, but only segment 1 (topmost) was sampled. Levels of E. coli O157:H7 recovered from segment 1 were 3.81 log CFU/g for the control subprimals and 3.36 log CFU/g for tenderized subprimals. The percentage of cells recovered in segment 2 was ca. 25-fold lower than levels recovered from segment 1, but E. coli O157:H7 was recovered from all six segments of the cores obtained from tenderized subprimals. In phase II, lean-side–inoculated (ca. 4.0 log CFU/g), single-pass tenderized subprimals were cut into steaks of various thicknesses (1.91 cm [0.75 in.], 2.54 cm [1.0 in.], and 3.18 cm [1.25 in.]) that were subsequently cooked on a commercial open-flame gas grill to internal temperatures of 48.8°C (120°F), 54.4°C (130°F), and 60°C (140°F). In general, regardless of temperature or thickness, we observed about a 2.6- to 4.2-log CFU/g reduction in pathogen levels following cooking. These data validate that cooking on a commercial gas grill is effective at eliminating relatively low levels of the pathogen that may be distributed throughout a blade-tenderized steak.


2013 ◽  
Vol 76 (10) ◽  
pp. 1778-1783 ◽  
Author(s):  
C. C. CHANCEY ◽  
J. C. BROOKS ◽  
J. N. MARTIN ◽  
A. ECHEVERRY ◽  
S. P. JACKSON ◽  
...  

Mechanical tenderization improves the palatability of beef; however, it increases the risk of translocating pathogenic bacteria to the interior of beef cuts. This study investigated the efficacies of lactic acid spray (LA; 5%), storage, and cooking on the survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks managed under simulated industry conditions. Beef subprimals inoculated with either high (105 CFU/ml) or low (103 CFU/ml) levels of E. coli O157:H7 were treated (LA or control) and stored for 21 days prior to mechanical tenderization, steak portioning (2.54 cm), and additional storage for 7 days. Steaks were then cooked to an internal temperature of 55, 60, 65, 70, or 75°C. Samples were enumerated and analyzed using DNA-based methods. Treatment with LA immediately reduced E. coli O157:H7 on the lean and fat surfaces of high- and low-inoculum–treated subprimals by more than 1.0 log CFU/cm2 (P &lt; 0.05). Storage for 21 days reduced surface populations of E. coli O157:H7 regardless of the inoculation level; however, the populations on LA- and control-treated lean surfaces of high- and low-inoculum–treated subprimals were not different after 21 days (P &gt; 0.05). E. coli O157:H7 was detected in core samples from high-inoculum–treated steaks cooked to 55, 60, or 70°C. Conversely, E. coli O157:H7 was not detected in core samples from low-inoculum–treated steaks, regardless of the internal cooking temperature. These data suggest that LA- and storage-mediated reduction of pathogens on subprimals exposed to typical industry contamination levels (101 CFU/cm2) reduces the risk of pathogen translocation and subsequent survival after cooking.


2016 ◽  
Vol 79 (2) ◽  
pp. 205-212 ◽  
Author(s):  
C. O. GILL ◽  
J. DEVOS ◽  
M. BADONI ◽  
X. YANG

ABSTRACT Inactivation of Escherichia coli O157:H7 in beef roasts cooked under selected cooking conditions was evaluated. Eye of round roasts were each inoculated at five sites in the central plane with a five-strain cocktail of E. coli O157:H7 at ca. 6.3 log CFU per site and cooked to center temperatures of 56 to 71°C in a convection oven set at 120, 140, 180, or 200°C, in a conventional oven set at 120 or 210°C, and in a slow cooker set on high or low. Prime rib roasts were each inoculated at 10 sites throughout the roast with the same E. coli O157:H7 cocktail at ca. 6.6 log CFU per site and cooked in the conventional oven set at 140 or 180°C to center temperatures of 58 to 71°C. The number of sites yielding E. coli O157:H7 after cooking decreased with increasing roast center temperature for the eye of round roasts cooked in the convection oven or in the slow cooker at a given setting, but this trend was not apparent for roasts of either type cooked in the conventional oven. Reductions of E. coli O157 in both types of roasts were generally less at the center than at other locations, particularly locations closer to the surface of the meat. When eye of round roasts were cooked to the same center temperature in the convection oven, the reduction of E. coli O157:H7 increased with increasing oven temperature up to 180°C and decreased after that. The reduction of E. coli O157:H7 in replicate roasts cooked under conditions in which the organism was not eliminated during cooking mostly differed by &gt;1 log CFU per site. However, E. coli O157:H7 was not recovered from any of the inoculation sites when eye of round roasts were cooked to 65, 60, 60, or 63°C in the convection oven set at 120, 140, 180, and 200°C, respectively; cooked to 63 or 71°C in the conventional oven set at 120 and 210°C, respectively; or cooked to 63°C in the slow cooker set at high or low. For prime rib roasts, E. coli O157:H7 was not recovered from any of the inoculation sites in roasts cooked to 71 or 58°C in the conventional oven set at 140 and 180°C, respectively.


2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


Author(s):  
Cheng Liu ◽  
Shuiqin Fang ◽  
Yachen Tian ◽  
Youxue Wu ◽  
Meijiao Wu ◽  
...  

Escherichia coli O157:H7 ( E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2010 ◽  
Vol 73 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
CATHY C. WEBB ◽  
JUAN CARLOS DIAZ-PEREZ ◽  
SHARAD C. PHATAK ◽  
JOHN J. SILVOY ◽  
...  

Numerous field studies have revealed that irrigation water can contaminate the surface of plants; however, the occurrence of pathogen internalization is unclear. This study was conducted to determine the sites of Escherichia coli O157:H7 contamination and its survival when the bacteria were applied through spray irrigation water to either field-grown spinach or lettuce. To differentiate internalized and surface populations, leaves were treated with a surface disinfectant wash before the tissue was ground for analysis of E. coli O157:H7 by direct plate count or enrichment culture. Irrigation water containing E. coli O157:H7 at 102, 104, or 106 CFU/ml was applied to spinach 48 and 69 days after transplantation of seedlings into fields. E. coli O157:H7 was initially detected after application on the surface of plants dosed at 104 CFU/ml (4 of 20 samples) and both on the surface (17 of 20 samples) and internally (5 of 20 samples) of plants dosed at 106 CFU/ml. Seven days postspraying, all spinach leaves tested negative for surface or internal contamination. In a subsequent study, irrigation water containing E. coli O157:H7 at 108 CFU/ml was sprayed onto either the abaxial (lower) or adaxial (upper) side of leaves of field-grown lettuce under sunny or shaded conditions. E. coli O157:H7 was detectable on the leaf surface 27 days postspraying, but survival was higher on leaves sprayed on the abaxial side than on leaves sprayed on the adaxial side. Internalization of E. coli O157:H7 into lettuce leaves also occurred with greater persistence in leaves sprayed on the abaxial side (up to 14 days) than in leaves sprayed on the adaxial side (2 days).


Sign in / Sign up

Export Citation Format

Share Document