scholarly journals Ionizing Radiations (Alpha, Beta, Gamma) Effects on CdS / P-Si Heterojunction Solar Cell for Electrical and Optical Properties

2017 ◽  
Vol 7 (1) ◽  
pp. 20 ◽  
Author(s):  
Ayman A. El-Amin ◽  
Magdi H. Saad

The effect of ionizing radiations (Alpha, Beta, Gamma) in CdS/p-Si heterojunction solar cells are discussed in this paper. The short-circuit current density parameters before Gamma irradiation conditions have been improved up to 35 mA/cm2 and after Gamma irradiation was 30 mA/cm2. The open circuit voltage before Gamma irradiation was 0.59 and 0.565 V after Gamma irradiation. The limitations of these devices were discussed by investigating the dependence of electrical and efficiency parameters in function of radiation time. The efficiency of the cell before radiation was equal to (11.2%) whenever, after the impact of both Alpha, Beta, and Gamma was follows, 4.7, 4.9, and 5.1% respectively. The fill factor before and after Gamma irradiation was 54.5 and 53 %. Studying and analyzing the cells using the I-V, with the change of time rate of Gamma radiation played a critical role in reducing the efficiency of solar cells. The campaign was carried out with different doses of a series of solar cells by exposing them to different time. The deterioration parameters of CdS/p-Si solar cells by Gamma radiation led to strongly supports the results of minority carrier lifetime, which clearly showed diminishing minority carrier lifetime with increasing radiation dose.

2007 ◽  
Vol 131-133 ◽  
pp. 1-8 ◽  
Author(s):  
Nathan Stoddard ◽  
Bei Wu ◽  
Ian Witting ◽  
Magnus C. Wagener ◽  
Yongkook Park ◽  
...  

A novel crystal growth method has been developed for the production of ingots, bricks and wafers for solar cells. Monocrystallinity is achievable over large volumes with minimal dislocation incorporation. The resulting defect types, densities and interactions are described both microscopically for wafers and macroscopically for the ingot, looking closely at the impact of the defects on minority carrier lifetime. Solar cells of 156 cm2 size have been produced ranging up to 17% in efficiency using industrial screen print processes.


2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


1995 ◽  
Vol 403 ◽  
Author(s):  
R. Venkatasubramanian ◽  
B. O'Quinn ◽  
J. S. Hills ◽  
M. L. Timmons ◽  
D. P. Malta

AbstractThe characterization of MOCVD-grown GaAs-AlGaAs materials and GaAs p+n junctions on poly-Ge substrates is presented. Minority carrier lifetime in GaAs-AIGaAs double-hetero (DH) structures grown on these substrates and the variation of lifetimes across different grainstructures are discussed. Minority-carrier diffusion lengths in polycrystalline GaAs p+-n junctions were evaluated by cross-sectional electron-beam induced current (EBIC) scans. The junctions were also studied by plan-view EBIC imaging. Optimization studies of GaAs solar cell on poly-Ge are discussed briefly. The effect of various polycrystalline substrate-induced defects on performance of GaAs solar cells are presented.


2014 ◽  
Vol 60 ◽  
pp. 181-190
Author(s):  
M. Daanoune ◽  
D. Kohen ◽  
A. Kaminski-Cachopo ◽  
C. Morin ◽  
P. Faucherand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document