scholarly journals Detecting the Unstable Points in Deformation Monitoring Geodetic Networks in Analysis Method of Subnetwork

2016 ◽  
Vol 11 (3) ◽  
pp. 61
Author(s):  
Peyman Javadi

One of the most crucial issues in engineering of structure and investigating ground deformation is deformation monitoring. The only thing which is strongly required is to create microgeodesy networks. An essential issue in microgeodesy networks is detecting unstable points of network. L1-Norm minimization and the global congruency can be noted as one of the classical methods for identifying network unstable points. In all previously conducted studies regarding this issue, results distinctly demonstrates that when displacement point vector is small, the number of points which have really displaced is more than that of true detection of displaced points using common deformation analysis ways. The probable reason for that can refer to spreading nature of the least squares estimation. Considering the results of recent studies in the detecting the network unstable points, to tackle the limitation the idea of subnetwork analysis is offered. In this case, some subnetworks including a subject point and the other source points appeared from dividing the deformation monitoring network. According to the unstable points, subnetworks will be there. This method will enable us to investigate the stable and unstable points. Having divided whole network to subnetworks, each network would be adjusted and unstable points of it would be detected. So, unstable points and their relations are cutoff and spreading effect of the least squares is fallen. This paper is on effort to evaluate the method in a simulated and a real network. The results prove that in a better and correct detection of unstable point can be successfully achieved by using subnetwork analysis compared to global congruency test all stimulates states proved the 35% of improvement on average. One percent of improvement in the results of subnetwork method to L1-Norm minimization cannot be acceptable. The algorithms of detecting unstable points in common methods and the method of analyzing subnetwork were conducted on a real network and the results are in line with simulated network results.

2021 ◽  
Vol 13 (12) ◽  
pp. 2263
Author(s):  
Dongfeng Jia ◽  
Weiping Zhang ◽  
Yuhao Wang ◽  
Yanping Liu

As fundamental load-bearing parts, the cylindrical steel structures of transmission towers relate to the stability of the main structures in terms of topological relation and performance. Therefore, the periodic monitoring of a cylindrical steel structure is necessary to maintain the safety and stability of existing structures in energy transmission. Most studies on deformation analysis are still focused on the process of identifying discrepancies in the state of a structure by observing it at different times, yet relative deformation analysis based on the data acquired in single time has not been investigated effectively. In this study, the piecewise cylinder fitting method is presented to fit the point clouds collected at a single time to compute the relative inclination of a cylindrical steel structure. The standard deviation is adopted as a measure to evaluate the degree of structure deformation. Meanwhile, the inclination rate of each section is compared with the conventional method on the basis of the piecewise cylinder fitting parameters. The validity and accuracy of the algorithm are verified by real transmission tower point cloud data. Experimental results show that the piecewise cylinder fitting algorithm proposed in this research can meet the accuracy requirements of cylindrical steel structure deformation analysis and has high application value in the field of structure deformation monitoring.


2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


2021 ◽  
Vol 13 (15) ◽  
pp. 3052
Author(s):  
Sonia Calvari ◽  
Alessandro Bonaccorso ◽  
Gaetana Ganci

On 13 December 2020, Etna volcano entered a new eruptive phase, giving rise to a number of paroxysmal episodes involving increased Strombolian activity from the summit craters, lava fountains feeding several-km high eruptive columns and ash plumes, as well as lava flows. As of 2 August 2021, 57 such episodes have occurred in 2021, all of them from the New Southeast Crater (NSEC). Each paroxysmal episode lasted a few hours and was sometimes preceded (but more often followed) by lava flow output from the crater rim lasting a few hours. In this paper, we use remote sensing data from the ground and satellite, integrated with ground deformation data recorded by a high precision borehole strainmeter to characterize the 12 March 2021 eruptive episode, which was one of the most powerful (and best recorded) among that occurred since 13 December 2020. We describe the formation and growth of the lava fountains, and the way they feed the eruptive column and the ash plume, using data gathered from the INGV visible and thermal camera monitoring network, compared with satellite images. We show the growth of the lava flow field associated with the explosive phase obtained from a fixed thermal monitoring camera. We estimate the erupted volume of pyroclasts from the heights of the lava fountains measured by the cameras, and the erupted lava flow volume from the satellite-derived radiant heat flux. We compare all erupted volumes (pyroclasts plus lava flows) with the total erupted volume inferred from the volcano deflation recorded by the borehole strainmeter, obtaining a total erupted volume of ~3 × 106 m3 of magma constrained by the strainmeter. This volume comprises ~1.6 × 106 m3 of pyroclasts erupted during the lava fountain and 2.4 × 106 m3 of lava flow, with ~30% of the erupted pyroclasts being remobilized as rootless lava to feed the lava flows. The episode lasted 130 min and resulted in an eruption rate of ~385 m3 s−1 and caused the formation of an ash plume rising from the margins of the lava fountain that rose up to 12.6 km a.s.l. in ~1 h. The maximum elevation of the ash plume was well constrained by an empirical formula that can be used for prompt hazard assessment.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. V99-V113 ◽  
Author(s):  
Zhong-Xiao Li ◽  
Zhen-Chun Li

After multiple prediction, adaptive multiple subtraction is essential for the success of multiple removal. The 3D blind separation of convolved mixtures (3D BSCM) method, which is effective in conducting adaptive multiple subtraction, needs to solve an optimization problem containing L1-norm minimization constraints on primaries by the iterative reweighted least-squares (IRLS) algorithm. The 3D BSCM method can better separate primaries and multiples than the 1D/2D BSCM method and the method with energy minimization constraints on primaries. However, the 3D BSCM method has high computational cost because the IRLS algorithm achieves nonquadratic optimization with an LS optimization problem solved in each iteration. In general, it is good to have a faster 3D BSCM method. To improve the adaptability of field data processing, the fast iterative shrinkage thresholding algorithm (FISTA) is introduced into the 3D BSCM method. The proximity operator of FISTA can solve the L1-norm minimization problem efficiently. We demonstrate that our FISTA-based 3D BSCM method achieves similar accuracy of estimating primaries as that of the reference IRLS-based 3D BSCM method. Furthermore, our FISTA-based 3D BSCM method reduces computation time by approximately 60% compared with the reference IRLS-based 3D BSCM method in the synthetic and field data examples.


2020 ◽  
Vol 10 (18) ◽  
pp. 6445 ◽  
Author(s):  
Theodoros Gatsios ◽  
Francesca Cigna ◽  
Deodato Tapete ◽  
Vassilis Sakkas ◽  
Kyriaki Pavlou ◽  
...  

The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system.


2006 ◽  
Vol 6 (4) ◽  
pp. 663-669 ◽  
Author(s):  
M. Acar ◽  
M. T. Özlüdemir ◽  
O. Akyilmaz ◽  
R. N. Çelik ◽  
T. Ayan

Abstract. Deformation analysis is one of the main research fields in geodesy. Deformation analysis process comprises measurement and analysis phases. Measurements can be collected using several techniques. The output of the evaluation of the measurements is mainly point positions. In the deformation analysis phase, the coordinate changes in the point positions are investigated. Several models or approaches can be employed for the analysis. One approach is based on a Helmert or similarity coordinate transformation where the displacements and the respective covariance matrix are transformed into a unique datum. Traditionally a Least Squares (LS) technique is used for the transformation procedure. Another approach that could be introduced as an alternative methodology is the Total Least Squares (TLS) that is considerably a new approach in geodetic applications. In this study, in order to determine point displacements, 3-D coordinate transformations based on the Helmert transformation model were carried out individually by the Least Squares (LS) and the Total Least Squares (TLS), respectively. The data used in this study was collected by GPS technique in a landslide area located nearby Istanbul. The results obtained from these two approaches have been compared.


Author(s):  
M. Crosetto ◽  
L. Solari ◽  
J. Balasis-Levinsen ◽  
N. Casagli ◽  
M. Frei ◽  
...  

Abstract. The Persistent Scatterer Interferometry is a powerful technique for ground motion detection and monitoring over wide areas. In the recent years, PSI has undergone a rapid evolution, largely thanks to the launch of the Copernicus Sentinel-1 constellation, the refinement of algorithms, and the increased computational capabilities. These factors allow for using Sentinel-1 interferometric data to develop ground deformation services for wide-area monitoring. Firstly, we review examples of services for national or regional deformation monitoring. The paper then describes the European Ground Motion Service (EGMS), part of the Copernicus Land Monitoring Service. The EGMS represents a unique initiative for performing ground deformation monitoring on a European scale.


Sign in / Sign up

Export Citation Format

Share Document