scholarly journals Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration

2019 ◽  
Vol 13 (2) ◽  
pp. 240
Author(s):  
Verdy A. Koehuan ◽  
Sugiyono . ◽  
Samsul Kamal

Numerical analysis was conducted on the aerodynamic performance and the flow characteristics around the counter-rotating wind turbine or CRWT blade through rear rotor configuration using various rotor diameter ratios and distance ratios to the turbine blade through a CFD (Computational Fluid Dynamics) simulation. CFD simulation showed the normalized power coefficients of the front rotor, rear rotor, and combined rotor (CRWT) to the single rotor with a strong influence of the rear rotor configuration with the addition of tip speed ratio (TSR). A larger average normalized power coefficient takes place at D1/D2=1.0 with L/D1=0.75 by 1.221. It is about 22.1% increased to the SRWT for the given TSR range. Axial velocity contours and resultant velocity vectors around the CRWT blade with a diameter ratio of D1/D2 > 1.0 and a closer rotor distance provide a stronger bound vortex and strong separation around the rear hub blade with a tendency to increase from the hub to the tip blade at low TSR. The higher the TSR, the movement of tip vortex moves closer to the rear tip blade which has the effect of increasing the leakage flow in the area of D1/D2 < 1.0.

Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


Author(s):  
Youjin Kim ◽  
Ali Al-Abadi ◽  
Antonio Delgado

This study introduces strategic methods for improving the aerodynamic performance of wind turbines. It was completed by combining different optimization methods for each part of the wind turbine rotor. The chord length and pitch angle are optimized by a torque-matched method (TMASO), whereas the airfoil shape is optimized by the genetic algorithm (GA). The TMASO is implemented to produce an improved design of a reference turbine (NREL UAE Phase V). The GA is operated to generate a novel airfoil design that is evaluated by automatic interfacing for the highest gliding ratio (GR). The adopted method produces an optimized wind turbine with an 11% increase of power coefficient (Cp) with 30% less of the corresponding tip speed ratio (TSR). Furthermore, the optimized wind turbine shows reduced tip loss effect.


2013 ◽  
Vol 291-294 ◽  
pp. 527-530
Author(s):  
Peng Zhan Zhou ◽  
Fang Sheng Tan

Based on BLADED software, the aerodynamic performance of a large scale wind turbine blade was analyzed under variable condition. The results show that the rated power of the blade under variable condition is increased 10%, when the rated wind speed is changed from 10.5m/s to 11.0 m/s. The blade’s wind power coefficient is above 0.46, and its tip speed ratio is between 7.8 and 11.4. When its tip speed ratio is 9.5, the blade’s maximum wind power coefficient is 0.486. It is indicated that the blade has good aerodynamic performance and wide scope of wind speed adaptive capacity. The blade root’s equivalent fatigue load is 2.11 MN•m, and its extreme flapwise load is 4.61 MN•m. The loads under variable condition are both less than that of the designed condition, so the blade’s application under variable condition is safe.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 38-50
Author(s):  
Mark Jason Thomas Loutun ◽  
Djamal Hissein Didane ◽  
Mohd Faizal Mohideen Batcha ◽  
Kamil Abdullah ◽  
Mas Fawzi Mohd Ali ◽  
...  

The wind is an energy source that has the properties of a clean, free, and readily available energy source. However, the efficiency of the existing rotors used to harness wind power is still not satisfactory. Thus, in this current study, the development and aerodynamic performance investigation of ten NACA airfoils comprising of five symmetrical and five non-symmetrical airfoils have been analyzed through the computational fluids dynamic (CFD) simulation approach. The main motive of this study was to investigate the aerodynamic performance of NACA airfoils to be used on a vertical axis wind turbine (VAWT), which will assist in further understanding the physics of the interaction between airflow and the wind turbine blades. The simulation was performed using two-dimensional computational models based on an unsteady state K-omega Shear Stress Transport (SST) turbulence model. This study covers a parametric study based on the variations of tip-speed ratios and constant wind velocity. The aerodynamic performances are evaluated in terms of torque, torque coefficient, and also power coefficient. The performance of NACA0018 was found to be the best among the other airfoils with a power coefficient of 0.3. NACA0010 displayed the lowest power coefficient among the other airfoils but had a more extensive operating range compared to the other airfoils. However, for non-symmetrical NACA airfoils, NACA2421 scored the highest power coefficient, followed by NACA4412. It was also found that most of the non-symmetrical NACA airfoils can operate at a higher range of tip-speed ratios compared to the symmetrical NACA airfoils.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1721 ◽  
Author(s):  
Hyeonmu Jang ◽  
Insu Paek ◽  
Seungjoo Kim ◽  
Deockjin Jeong

In this study, an off-grid–type small wind turbine for street lighting was designed and analyzed. Its performance was predicted using a computational fluid dynamics model. The proposed wind turbine has two blades with a radius of 0.29 m and a height of 1.30 m. Ansys Fluent, a commercial computational fluid dynamics solver, was used to predict the performance, and the k-omega SST model was used as the turbulence model. The simulation result revealed a tip-speed ratio of 0.54 with a maximum power coefficient, or an aerodynamic rotor efficiency of 0.17. A wind turbine was installed at a measurement site to validate the simulation, and a performance test was used to measure the power production. To compare the simulation results obtained from the CFD simulation with the measured electrical power performance, the efficiencies of the generator and the controller were measured using a motor-generator testbed. Also, the control strategy of the controller was found from the field test and applied to the simulation results. Comparing the results of the numerical simulation with the experiment, the maximum power-production error at the same wind speed was found to be 4.32%.


2014 ◽  
Vol 7 (2) ◽  
pp. 83-79
Author(s):  
Wisam Abd Mohammed Al-Shohani

This paper presents a numerical analysis of new airfoil, TCB6612, and compared with respect to standard airfoil NACA4412 using them in wind turbine blade. The main objective of this work is to enhance the aerodynamic performance of airfoil by changing the geometry of the airfoil in order to increase the overall power output of the wind turbine. Two software, GAMBIT and FLUENT, are used in this work; GAMBIT is used to create modeling and meshing of the airfoils while FLUENT is used to simulate and analysis the airfoils. The analysis showed that the significant enhancement in aerodynamic performance for TCB6612 is occurred. It is found that value of Cd/Cl is decreased about 10.23%, the power coefficient is reached to 51.9%, and the power output is increased about 9.8%.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


Sign in / Sign up

Export Citation Format

Share Document