scholarly journals Performance of Appended Wire Mesh Packing in Sieve Tray Distillation Column of Ethanol-Water System

2015 ◽  
Vol 9 (7) ◽  
pp. 148
Author(s):  
Fadlilatul Taufany ◽  
Nonot Soewarno ◽  
Melvina Eliana Sutanto ◽  
Indi Raisa Girsang

For the separation process in liquid-liquid mixture such as ethanol-water mixture, a sieve tray distillation columnis an alternatif for affordable process and maintenance. However to date, this sieve tray system is still currentlyhaving a lower Murphee efficiency and smaller interfacial area, as compared to other tray system, that is, either abubble cap or valve tray. Therefore it is of important to optimize the performance of sieve tray distillation bymeans of adding the wire mesh packing on that tray, as being the aim of the present study. This study isconducted by using a batch sieve tray distillation system, where the wire mesh packing is added on the third traythat is calculated from the top of the column, to avoid flooding inside the column. Here the resulting fermentedmolasses of containing a 10% volume of ethanol is used as a mixture distillation feed. The height of the wiremesh packing being studied is varied as 5 cm, 3 cm, and 2 cm. Our results showed that the Murphee efficiencyobtained by the variation of the packing height of 5 cm, 3 cm, 2 cm and without packing were 73.5%, 66.27%,56.86%, and 46.7% respectively, and were increased by subsequent level of the packing height. Thecorresponding hydrodynamic properties of this appended packing sieve tray distillation by means of theinterfacial area were 11.88 cm2/cm3, 0.48 cm2/cm3, and 0.32 cm2/cm3, while its pressure drop measured from thewater manometer height were 38.33 cm H2O/m, 30 cm H2O/m, 10 cm H2O/m for the packing height of 5 cm, 3cm, 2 cm height, respectively. The increasing of the performance of appended packing sieve tray distillation bymeans of the Murphee efficiency is explained by the increasing of the interfacial area for vapour-liquid than thetray itself. This preliminary study is expected to be a pioneer study of strategy to increase the performance ofconventional sieve tray distillation that is known as a kind of affordable distillation process.

2015 ◽  
Vol 9 (7) ◽  
pp. 140 ◽  
Author(s):  
Fadlilatul Taufany ◽  
Nonot Soewarno ◽  
Koko Yuwono ◽  
Dimas Ardiyanta ◽  
Melvina Eliana ◽  
...  

Two subsequent separation processes are required to produce absolute ethanol (at least purity of 99.5% v/v),namely the distillation and adsorption processes. Thus, it is important to find the optimum operation conditionfor those following processes. The aims of the present study are to optimize the feed plate of distillation and thetemperature of feed adsorbent. This study is conducted using a continuous sieve tray distillation system with thenumber of 16 trays, the length-diameter ratio of 80.64, the reflux ratio of 3.5, and the feed with ethanol contentof 10 % v/v ethanol, which is produced via the fermentation process of molasses. To conduct the first aim of thisstudy, the feed enters the distillation column with several of variable feed plate, i.e. 12, 13, 14, and 15. This feedplate location is calculated from the top of the column. On the other hand, the second aim of this study, isconducted using the subsequent combination of distillation and adsorbent columns, where the distillate (purity ofethanol around 95% v/v) from the distillation column is then flowed into the adsorbent column with various feedadsorbent temperature, i.e. 80 °C, 90 °C, 100 °C, and 110 °C, to be purified as an absolute ethanol. Here theadsorbent column is designed as a fix bed adsorption column with a molecular sieve of 3A (zeolite) is used as anadsorbent for that purification process. Our results showed that the optimum feed plate is 14, because at thisplate the ethanol distillate has the highest content among those various variables. Meanwhile, the optimumtemperature of feed adsorbent is 90° C, which requires the least energy for the distillation - adsorption process,i.e. at 18691 kJ/kg absolute ethanol. This primary study is expected to be an alternative way to optimize theoperating condition of the sieve tray distillation-molecular sieve adsorption system by means of acquiring aminimum energy involving in the process to achieve the highest purity of ethanol.


Author(s):  
Jaeha Lee ◽  
Goangseup Zi ◽  
Ilkeun Lee ◽  
Yoseok Jeong ◽  
Kyeongjin Kim ◽  
...  

Recently, there was a collision accident involving vehicle–concrete median barrier in South Korea, and unfortunately, passengers on the opposite direction road were killed by the flying broken pieces of concrete generated by the collision. Primarily after this accident, we felt the need for developing an improved concrete median barrier up to level of SB6 impact severity in order to minimize the amount of broken pieces of concrete and any possibility of traffic accident casualty under the impact loading of truck. Accordingly, in this study, several designs of concrete median barriers have been examined, and a preliminary study has been conducted for developing and verifying appropriate collision model. First, type of vehicle was selected based on impact analysis on rigid wall. Then, the effects of element size and other key parameters on the capacity of the concrete median barrier under impact were studied. It was found that the key parameters for controlling behaviors of the median barrier under impact loading were contact option, threshold value, and mesh and boundary conditions. Furthermore, as a parametric study, effect of geometry and amount of wire-mesh or steel rebar in concrete median barrier on impact resistances of median barrier for reducing the collision debris were investigated. The amount of volume loss after the collision of truck was compared for various reinforcement ratios.


Bubble sizes in bubble column affect the bubble induced mixing of phases, interfacial area and transfer processes. Acoustic technique is used to measure bubble size distribution in a rectangular bubble column of cross section 0.2m x 0.02m for air sparged into water and aqueous solutions of ethylene glycol. Five condenser mikes at intermediate distance of 0.05 m measured above the distributor plate were used to find out the variation of bubble size as the bubbles move up. Sauter-mean bubble diameter and specific interfacial area were estimated from bubble size distribution at several superficial air velocity, static bed height, distance above the distributor plate and ethylene glycol concentration. The BSD exhibited mono-modal distribution and indicated non-uniform homogeneous bubbling regime. Sauter-mean bubble diameter is independent of superficial gas velocity, static bed height and concentration of EG, although, the values were higher than that for air-water system. Sauter-mean bubble diameter decreases as the bubbles move up indicating bubble breakup to take place once the bubbles leave the sparger. The value of interfacial area increases as the static bed height decreases and distance above the distributor plate increases. For air-ethylene glycol solution the values of specific interfacial area are about 200% higher than that observed in case of air-water system. The acoustic technique may be used to measure local values of bubble sizes and specific interfacial area.


2008 ◽  
Vol 12 (2) ◽  
pp. 92-93 ◽  
Author(s):  
Prashantha Kesari ◽  
Mukund Jagannathan
Keyword(s):  

Author(s):  
Joel G. Teleken ◽  
Leandro O. Werle ◽  
Iaçanã G.B. Parisotto ◽  
Cintia Marangoni ◽  
Ana Paula Meneguelo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3682
Author(s):  
Sung-Sik Park ◽  
Jung-Shin Lee ◽  
Dong-Eun Lee

Herein, we suggest a wire mesh method to classify the particle shape of large amounts of aggregate. This method is controlled by the tilting angle and opening size of the wire mesh. The more rounded the aggregate particles, the more they roll on the tilted wire mesh. Three different sizes of aggregate: 11–15, 17–32, and 33–51 mm were used for assessing their roundness after classification using the sphericity index into rounded, sub-rounded/sub-angular, and angular. The aggregate particles with different sphericities were colored differently and then used for classification via the wire mesh method. The opening sizes of the wire mesh were 6, 11, and 17 mm and its frame was 0.5 m wide and 1.8 m long. The ratio of aggregate size to mesh-opening size was between 0.6 and 8.5. The wire mesh was inclined at various angles of 10°, 15°, 20°, 25°, and 30° to evaluate the rolling degree of the aggregates. The aggregates were rolled and remained on the wire mesh between 0.0–0.6, 0.6–1.2, and 1.2–1.8 m depending on their sphericity. A tilting angle of 25° was the most suitable angle for classifying aggregate size ranging from 11–15 mm, while the most suitable angle for aggregate sizes of 17–32 and 33–51 mm was 20°. The best ratio for the average aggregate size to mesh-opening size for aggregate roundness classification was 2.


2013 ◽  
Vol 795 ◽  
pp. 488-491 ◽  
Author(s):  
Shaiful Rizam Shamsudin ◽  
Mohd Harun ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Hafizal Yazid ◽  
Mohd Noor Mazlee

The wire material of filter mesh is made of 304 grade stainless steel. The failure to run properly was due to the impact of burst and torn. The client also expects that the failure was due to corrosion problems. A visual inspection on the strainer mesh was found covered by brownish rust layers and some scratches at the damaged area. The rusty wire mesh that was washed with pickling acid showed a clean and smooth surface. Energy dispersive spectroscopy (EDS) examination of the rusty wire mesh surface indicated that it was only normal oxide precipitates. Thus, it's proven that there were no signs of severe corrosion attack on the failed sample. SEM micrographs showed the unidirectional scratch effects exist in the damaged area. The fractography study was found there was a typical ductile structure on the fracture surface of the wire. It is proven that the wire mesh was actually still in good condition and has not experienced any embrittlement problems as if it exposed to any corrosive environment. The root cause of the failure is shown by the effect of scratches in which it is usually caused by a mechanical forceful push by a hard object or in other words, it is caused by human error factor.


Beverages ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 29 ◽  
Author(s):  
Jacob Rochte ◽  
Kris Berglund

Distilled alcoholic beverages have been produced through fermentation and distillation for centuries but have not purposefully involved a chemical reaction to produce a flavoring. Introducing a microorganism to produce butyric acid along with the typical yeast ethanol fermentation sets up a reactive distillation system to flavor a spirit with ethyl butyrate and butyric acid. The ternary interactions of water, ethanol, and butyric acid allow all three to vaporize in the stripping distillation, thus they are concentrated in the low wines and give a large excess of ethanol compared to butyric acid for better reaction completion. The stripping distillation has also been modeled on Aspen Plus® V9 software (by Aspen Technology, Inc. Bedford, MA, USA) and coincides well with a test stripping distillation at the bench scale. Amberlyst® 15 wet catalyst was added to a subsequent distillation, resulting in the production of the desired ethyl butyrate in the distillate, measured by gas chromatography. Primary sensory evaluation has determined that this process has a profound effect on the smell of the spirit with the main flavor being similar to fruity bubble gum. The current results will provide a pathway for creating spirits with a desired flavor on demand without acquiring a heavy capital cost if a beverage distillation column is already purchased.


Sign in / Sign up

Export Citation Format

Share Document