scholarly journals Thermodynamic Analysis of a Cascade Heat Pump Incorporated in High-Temperature Heating System

2020 ◽  
Vol 66 (11) ◽  
pp. 677-683
Author(s):  
Nedžad Rudonja ◽  
Milan Gojak ◽  
Ivan Zlatanović ◽  
Ružica Todorović

In this article is presented a thermodynamic analysis of a cascade heat pump system designed for using in high-temperature heating systems. The own thermodynamic model was built by using properties of working fluids from the CoolProp base. The cascade heat pump was designed to use ambient air as heat source with temperature t_amb= –20 °C and for heating water in the high-temperature heating system up to 70 °C. The projected heating capacity of the cascade heat pump was 100 kW. The coefficient of performance (COP) of the cascade heat pump system due to use of different working mediums combinations in cycles of the cascade heat pump was investigated. For the best combination of working fluids (mediums) sub-cooling, super-heating, pressure loss in compressor’s suction line, as well as exergy efficiency of the heat pump were analysed as a function of the mean temperature of the cascade heat exchanger.

Author(s):  
Jeremy Spitzenberger ◽  
Pengtao Wang ◽  
Laith Ismael ◽  
Hongbin Ma ◽  
Ahmad Abuheiba ◽  
...  

Abstract Ejector driven systems have the ability to operate at high efficiencies, utilizing recycled thermal energy as a power source. For a typical ejector heat pump system, the increase of the condenser temperature reduces the coefficient of performance (COP). In addition, if the condenser temperature is higher than the critical temperature, the ejector may not function. In this situation, the condenser temperature must be reduced, and an additional heater will be utilized to heat the production water from the condenser temperature to the desired temperature. In this investigation, a single-stage gas-fired ejector heat pump (EHP) is investigated and thermodynamically modeled in order to optimize the system COP for the purpose of heating water by utilizing the thermal energy from the ambient air. The effects of the high-temperature evaporator (HTE) and low-temperature evaporator (LTE) temperatures on the ejector critical back pressure and the EHP system performance are examined for a HTE temperature range of 120-180 °C and LTE temperatures of 15.5, 17.5, and 19.5 °C. Results show that an optimized COP of the EHP system exists which depends on HTE and LTE temperatures, primary nozzle throat diameters. In addition, it is found that the EHP COP is independent of the ejector COP. From this investigation a maximum EHP COP of 1.31 is able to be achieved for a HTE temperature of 160 °C and a LTE temperature of 19.5 °C with a total heating capacity of 15.98 kW.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Akbar Alidadi Shamsabadi ◽  
Mehdi Jahangiri ◽  
Tayebeh Rezaei ◽  
Rouhollah Yadollahi Farsani ◽  
Ali Seryani ◽  
...  

Purpose In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of Iran. Design/methodology/approach According to the material and the area of the residential space, the required heating of the building was calculated manually and then the thermodynamic analysis of the system and simulation was done in MATLAB software. Finally, regarding the waste of system, an efficient solar heating system, providing all the required energy to heat the building, was obtained. Findings The surface area of the solar collector is equal to 46 m2, the capacity of the tank is about 2,850 m3, insulation thickness stands at 55 cm and the coefficient of performance in required heat pump is accounted to about 9.02. Also, according to the assessments, the maximum level of received energy by the collector in this system occurs at a maximum temperature of 68ºC. Originality/value To the best of the authors’ knowledge, in the present work, for the first time, using mathematical modeling and analyzing of the first and second laws of thermodynamics, as well as using of computational code in MATLAB software environment, the solar-assisted ground source heat pump system is simulated in a residential unit located in Tehran.


2011 ◽  
Vol 354-355 ◽  
pp. 828-832
Author(s):  
Xi Ming Zhang ◽  
Dong Hui Pan ◽  
Qing Bo Zhang

Solar assisted heat pump system(SAHP) has a wide and wonderful future for its excellent performance in energy saving and environment protection. Solar assisted heat pump system for floor heating is combined by solar assisted heat pump and floor heating. Presents the operating principal and key equipments and designs solar collector, thermal storage container, floor-coil radiator and so on, discusses the feasibility of introduction of a combined heating system for an energy building in Qingdao. On the base of this, two types of energy supply systems, the conventional system(gas heating and SAHP system, were set. Those two types of systems were evaluated regarding energy efficiency and environmental load. According to the results, compared with the conventional system, SAHP system was capable of reducing the primary energy consumption and CO2 emission, respectively 20% and 19.2%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


Sign in / Sign up

Export Citation Format

Share Document